

KVM Evaluation CC TF meetings, WG1, The Northeast Asia OSS Promotion Forum

Tomoe Sugihara VA Linux Systems Japan

Copyright © VA Linux Systems Japan. All rights reserved.

Agenda

- 1. Background/Objectives
- 2. Overview of the Evaluation
- 3. Testing Environment
- 4. Results
- 5. Conclusion

1. Background/Objectives

Background

- No comprehensive reports available in public
- few examples of real system implementations
 - What is KVM anyway? Is it really usable in an enterprise system?

Objectives

- Provide useful information for system architects, integrators, and administrators (not for hackers like ...)
- Focus on system level testing
- Clarify cause and workaround of the issues

2. Overview of the Evaluation

• I. Basic functionality

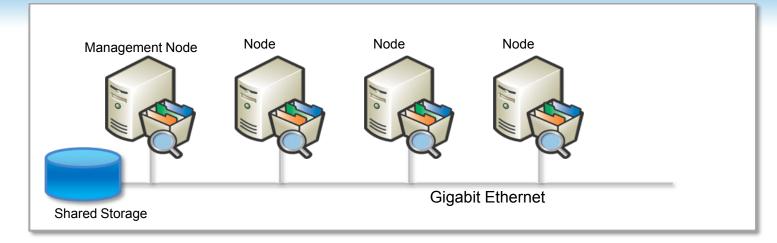
- VM definition, creation, deletion, migration, ...
- Network/Disk I/O performance
- Time management in guest OS

• II. Fault tolerance

- Impact of Host OS and VM failure
- Impact on filesystem on the guest caused by failures

• III. Impact of VM load

- CPU, Network, memory, and Disk I/O
- Load balancing


• IV. Scenarios

- Migrating VMs
- Switching back and forth to different systems

4

3. Testing Environment

Cloud-like environment

- Centralized management by management node (libvirt)
- VM images on Shared storage
- Heterogeneous CPU archs --- AMD/Intel

Software

CentOS 5.4(x86_64)

Component	Package
Kernel	kernel-2.6.18-164.el5
KVM kernel module	kmod-kvm-83-105.el5_4.9
qemu	kvm-83-105.el5_4.9
libvirt	libvirt-0.6.3-20.1.el5_4

4. Results

Disclaimer:

Performance figures used in the slides are measured on the testbed, which may vary depending on systems to systems

I. Basic functionality

VM management

- VM definition, image creation, installation, migration, ...
- Managing resources: definition, dynamic allocations

Wrote scripts using libvirt-python for VM manipulations

Enough functions for practical use and no unavoidable critical issue

Network performance

Measured by the iperf benchmarking tool

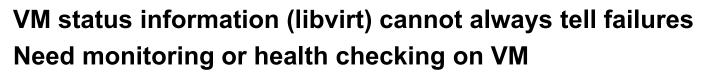
Virtio works best (70% of the physical performance)

Disk I/O performance

- Measured I/O performance from a guest OS
 - raw/virtio performs best, yet the performance is low (only 40% to physical) NFS from guest OS works much better

7

Time management in Linux guest


- Time drift happened regardless of cpu load (by default in the testbed)
 - Safer to use NTP both on the host and the guest

II. Fault tolerance

Impact by Host OS failure and VM failure

Experiments with intentional fault injections

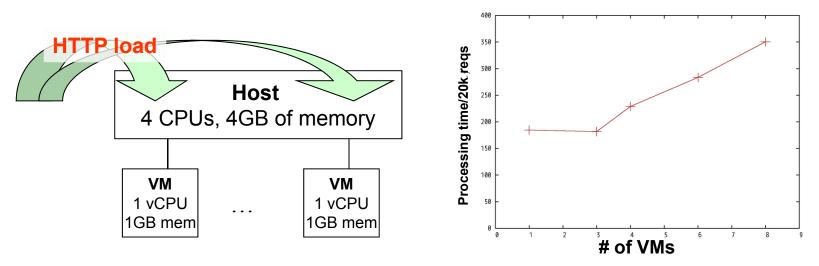
Impact on filesystem

Fault injections while writing to ext3 filesystem on the guest

No corruption or no disadvantages to physical machines

Example system

- Experiment on a web server system with HA software (heartbeat)
 - · Examined failure detection, failover'ablity

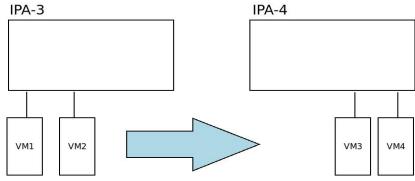


Worked just as fine as a system with physical servers

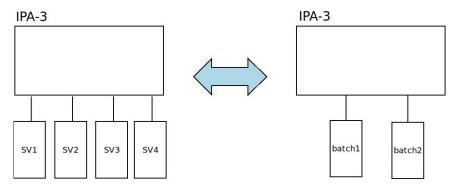
III. Impact of VM load

- CPU, Network, Memory, Disk I/O
 - Equally distributed over VMs, except for network-receive
 - Can be worked around by packet scheduler on the host OS
- On an example scale-out type web server system

- Need to take CPU consumption for I/Os into account
 - A single VM with 1 vCPU was consuming up to 130%
- Need to monitor performance to detect possible performance degradation


9

IV. Scenarios



Scheduled migration

Moves VMs to another host with VM live migration

- Switching systems
 - Runs different systems in different times (day/night) with VM stop/start (instead of suspend/resume)

Perfectly achievable with our libvirt-python scripts

5. Conclusion

Summary

- Comprehensive evaluation and objective analysis
- Usable scripts and re-producible setup procedures of the testbed
- Documents:
 - http://ossipedia.ipa.go.jp/doc/207

Conclusion

- Ready for enterprise use PROVIDED with cares for the pitfalls we found
- Performance improvements, more sophisticated management tools are desirable

謝謝, 감사합니다, ありがとうございました

Copyright © VA Linux Systems Japan. All rights reserved.