

Software Defined Networking,
openflow protocol and its controllers

Isaku Yamahata <yamahata@private.email.ne.jp>
 <yamahata@valinux.co.jp>
VALinux Systems Japan K.K

LinuxCon Japan June 6th, 2012

mailto:yamahata@private.email.ne.jp
mailto:yamahata@valinux.co.jp

Agenda

● SDN and openflow protocol
● Openflow controllers
● Related academic researches
● Openflow controller to network operating

system

Software Defined Networking and
Openflow protocol

SDN: Software Defined Networking

● http://opennetsummit.org/why.html
● SDN is a new approach to networking and its key attributes include: separation of

data and control planes; a uniform vendor-agnostic interface called OpenFlow
between control and data planes; a logically centralized control plane; and slicing
and virtualization of the underlying network. The logically centralized control plane is
realized using a network operating system that constructs and presents a logical
map of the entire network to services or control applications implemented on top of
it. With SDN, a researcher or network administrator can introduce a new capability
by writing a simple software program that manipulates the logical map of a slice of
the network. The rest is taken care of by the network operating system.

● [Paraphrased from the HotSDN ‘12 Solicitaion]
● Software Defined Networking (SDN) is a refactoring of the relationship between

network devices and the software that controls them.

From http://opennetsummit.org/why.html

OpenFlow/SDN

http://opennetsummit.org/why.html

Openflow

datapath(hardware)

controlpath(software)

datapath(hardware)

controlpath(software) openflow

Openflow controller

Openflow protocol(tcp/ssl)

Ethernet switch Openflow ethernet switch

Flow table and match/action

Openflow controller

Flow table

MAC
src

MAC
dst

IP
src

IP
dst

TCP
src

TCP
dst ... action

Packet in event
When entry miss

* * * * * 80
output
port N

port PacketportPacket
Packet match Action

OpenFlow controller structure

Openflow protocol parser/serializer

Event layer

Switch management

app app ...

Library:
There are libraries available for
most major language
C, Java, Python, Ruby, Haskel, Ocaml,
Earlang, Javascript...

Controller core

Application for controller
static/dynamically loadable
Usually called as
Module, bundle...

Network Operating System(NOS)

● Distributed system

● Communicate with
forwarding planes

● Provides control programs
● Abstract network view

– State distribution abstraction

– Specification abstraction

● abstract interfaces to network
application
– NOS takes care of distributed

details Network Operating System

Global network view

Control program

● Controle program
● Configuration =

f(network view)

Abstracted network view

SDN

http://opennetsummit.org/talks/ONS2012/heller-mon-intro.pdf

http://opennetsummit.org/talks/ONS2012/heller-mon-intro.pdf

Openflow Controllers

NOX

● New NOX
● Stanford Univ. UC Berkly,

● GPL v3

● C++

● Native thread model

● NOX classic
● Stanford Univ. Nicira

● GPL v3

● Python based on C++ and swig(http://www.swig.org)

● Its own thread model

● Esepcially for python support, threading is limited.

● http://www.noxrepo.org/nox/about-nox/

● https://github.com/noxrepo/nox

● http://groups.google.com/group/nox_dev

http://www.swig.org/
http://www.noxrepo.org/nox/about-nox/
http://groups.google.com/group/nox_dev

POX

● Stanford Univ.
● GPL v3
● python
● Pure Python version of Nox
● http://www.noxrepo.org/pox/about-pox/
● https://github.com/noxrepo/pox
● http://groups.google.com/group/pox_dev

http://www.noxrepo.org/pox/about-pox/

Trema

● NEC
● GPL v2
● C and Ruby
● TremaShark: integrated network simulator/controller

debugger
● Many apps(TremaApps) and tutorial

● https://github.com/trema/apps

● http://trema.github.com/trema/
● https://github.com/trema
● https://groups.google.com/group/trema-dev

http://trema.github.com/trema/
https://github.com/trema
https://groups.google.com/group/trema-dev

Beacon

● David Erickson of Stanford Univ.
● GPL v2 license and the Stanford University FOSS

License Exception v1.0
● Java with OSGI, OpenflowJ
● Multithreaded

● They claim that Beacon scales well
– http://www.openflow.org/wk/index.php/Controller_Performanc

e_Comparisons
● https://openflow.stanford.edu/display/Beacon/Home

● git://gitosis.stanford.edu/beacon.git

https://openflow.stanford.edu/display/Beacon/Home

Floodlight

● BigSwitch

● Apache 2.0

● Java
● Python support via Jython

● Forked from Beacon
● Redesigned to removed OSGI dependency

– Its own module support

● Actively defining North bound API(REST API)
● e.g. Static flow pusher

● http://floodlight.openflowhub.org/

● https://github.com/floodlight/floodlight

● http://groups.google.com/a/openflowhub.org/group/floodlight-dev/topics

http://floodlight.openflowhub.org/
http://groups.google.com/a/openflowhub.org/group/floodlight-dev/topics

Maestro

● Rice Univ.
● LGPL v2
● Java
● Multi threaded

● Using DAG(Directed Acyclic Graph) to exploit parallelism

● http://code.google.com/p/maestro-platform/
● http://maestro-platform.googlecode.com/svn/trunk/

● subversion

● http://groups.google.com/group/maestro-platform

http://code.google.com/p/maestro-platform/
http://maestro-platform.googlecode.com/svn/trunk/

Ryu

● NTT + VALinux Systems Japan K.K.
● Apatche 2.0
● Python
● OpenStack support
● Tunneling/VLan
● For details: session: June 8th 14:00-

Full disclosure: I am a core developer of Ryu

Node Flow

● Cisco: Gary Berger(personal project?)
● MIT lincense
● Java script (with Node.js + oflib Node)
● http://garyberger.net/?p=537
● https://github.com/gaberger/NodeFLow

http://garyberger.net/?p=537

FlowER

● Travelping
● Closly working with Telcom company?

● BSD-like lisence (refer the code for details)
● Erlang
● Used as a port of their products?
● https://github.com/travelping/flower

Nettle

● Yale Univ.
● BSD3
● Haskel
● http://haskell.cs.yale.edu/?page_id=376
● http://www.cs.yale.edu/publications/techreports/

tr1431.pdf

http://haskell.cs.yale.edu/?page_id=376

Mirage

● BSD
● OCaml
● http://openmirage.org/
● https://github.com/avsm/mirage
● http://anil.recoil.org/papers/2010-hotcloud-

lamp.pdf

http://openmirage.org/
https://github.com/avsm/mirage

Open vSwitch: ovs-controller

● Nicira
● Apatch 2.0(ovs-controller.c itself)
● C
● Included in Open vSwitch
● simple OpenFlow controller reference

implementation

Proprietary Products
(Just for completeness)

● Nicira: NVP Network Virtualization Platform
● BigSwitch: Floodlight based?
● NEC: ProgrammableFlow
● Midokura: Midonet
● NTT Data:
● Travelping: FlowER based?

Ask your vendors for details

Related Academic research

Onix

● Teemu Koponen, Martin Casado, Natasha Gude, and
Jeremy Stribling, Nicira Networks; Leon Poutievski, Min
Zhu, and Rajiv Ramanathan, Google; Yuichiro Iwata,
Hiroaki Inoue, and Takayuki Hama, NEC; Scott Shenker,
International Computer Science Institute (ICSI) and UC
Berkeley

● No codes publicly available
● http://static.usenix.org/event/osdi10/tech/#wed
● http://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf
● Network Operating System
● Network Information Base(NIB)

http://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf

flowvisor

● Its own license (refer the repo for details)
● Java
● OF virtualization/network slicing
● http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf

● https://bitbucket.org/onlab/flowvisor

http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf

Other researches

● RouteFlow
● https://sites.google.com/site/routeflow/

● Flowscale
● Load balancer
● http://www.openflowhub.org/display/FlowScale/FlowScale+Home

● Frenetic: model checker
● http://frenetic-lang.org/

● NICE-OF
● Symbolic Execution with Model checker
● https://www.usenix.org/system/files/conference/nsdi12/nsdi12-

final105.pdf
● http://code.google.com/p/nice-of/

Openflow controller to network operating system

Openflow protocol
parser/serializer

Event layer

Switch management

app ...

Network/distributed system
Abstruction

O
penflow

 controller

N
etw

ork O
perating S

ystem

app

proprietaryAcademic OSS

Openflow controller to Network OS

● Distributed programming is hard

● State distribution

● Event changing the state is hard

● react chage on network configuration and chage the switch configuration

● Calculating the switch diff based on network diff is hard

● Configuring network right is hard

● Verification?

● Model checker?

● Provide some layer for distributed programming

● Higher level network view

● Debugging environment?

– View network status by single command

– Network health check: Take network states snapshot, and run verification on it
● Or runtime check?

● Distributede database?

● Switch model

– tracking switch flows somehow

● HA, multi controllers

– Taking over switch

● Simulator?

Summary

● OSS Openflow controllers are very common
● The next area to investigate is to evolve from

openflow controller to network operating system

Thank you

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

