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● Openflow controller to network operating 
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Openflow protocol



  

SDN: Software Defined Networking

● http://opennetsummit.org/why.html
● SDN is a new approach to networking and its key attributes include: separation of 

data and control planes; a uniform vendor-agnostic interface called OpenFlow 
between control and data planes; a logically centralized control plane; and slicing 
and virtualization of the underlying network. The logically centralized control plane is 
realized using a network operating system that constructs and presents a logical 
map of the entire network to services or control applications implemented on top of 
it. With SDN, a researcher or network administrator can introduce a new capability 
by writing a simple software program that manipulates the logical map of a slice of 
the network. The rest is taken care of by the network operating system.

● [Paraphrased from the HotSDN ‘12 Solicitaion] 
● Software Defined Networking (SDN) is a refactoring of the relationship between 

network devices and the software that controls them.



  
From http://opennetsummit.org/why.html

OpenFlow/SDN

http://opennetsummit.org/why.html


  

Openflow

datapath(hardware)

controlpath(software)

datapath(hardware)

controlpath(software) openflow

Openflow controller

Openflow protocol(tcp/ssl)

Ethernet switch Openflow ethernet switch



  

Flow table and match/action

Openflow controller

Flow table
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dst

IP
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IP
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dst ... action

Packet in event
When entry miss

* * * * * 80
output
port N

port PacketportPacket
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OpenFlow controller structure

Openflow protocol parser/serializer

Event layer

Switch management

app app ...

Library:
There are libraries available for
most major language
C, Java, Python, Ruby, Haskel, Ocaml,
Earlang, Javascript...

Controller core

Application for controller
static/dynamically loadable
Usually called as
Module, bundle...



  

Network Operating System(NOS)

● Distributed system

● Communicate with 
forwarding planes

● Provides control programs
● Abstract network view

– State distribution abstraction

– Specification abstraction

● abstract interfaces to network 
application
– NOS takes care of distributed 

details Network Operating System

Global network view

Control program

● Controle program
● Configuration = 

f(network view)

Abstracted network view



  

SDN

http://opennetsummit.org/talks/ONS2012/heller-mon-intro.pdf

http://opennetsummit.org/talks/ONS2012/heller-mon-intro.pdf


  

Openflow Controllers



  

NOX

● New NOX
● Stanford Univ. UC Berkly,

● GPL v3

● C++

● Native thread model

● NOX classic
● Stanford Univ. Nicira

● GPL v3

● Python based on C++ and swig(http://www.swig.org)

● Its own thread model

● Esepcially for python support, threading is limited.

● http://www.noxrepo.org/nox/about-nox/

● https://github.com/noxrepo/nox

● http://groups.google.com/group/nox_dev

http://www.swig.org/
http://www.noxrepo.org/nox/about-nox/
http://groups.google.com/group/nox_dev


  

POX

● Stanford Univ.
● GPL v3
● python
● Pure Python version of Nox
● http://www.noxrepo.org/pox/about-pox/
● https://github.com/noxrepo/pox
● http://groups.google.com/group/pox_dev

http://www.noxrepo.org/pox/about-pox/


  

Trema

● NEC
● GPL v2
● C and Ruby
● TremaShark: integrated network simulator/controller 

debugger
● Many apps(TremaApps) and tutorial

● https://github.com/trema/apps

● http://trema.github.com/trema/
● https://github.com/trema
● https://groups.google.com/group/trema-dev

http://trema.github.com/trema/
https://github.com/trema
https://groups.google.com/group/trema-dev


  

Beacon

● David Erickson of Stanford Univ.
● GPL v2 license and the Stanford University FOSS 

License Exception v1.0
● Java with OSGI, OpenflowJ
● Multithreaded

● They claim that Beacon scales well
– http://www.openflow.org/wk/index.php/Controller_Performanc

e_Comparisons
● https://openflow.stanford.edu/display/Beacon/Home

● git://gitosis.stanford.edu/beacon.git

https://openflow.stanford.edu/display/Beacon/Home


  

Floodlight

● BigSwitch

● Apache 2.0

● Java
● Python support via Jython

● Forked from Beacon
● Redesigned to removed OSGI dependency

– Its own module support

● Actively defining North bound API(REST API)
● e.g. Static flow pusher

● http://floodlight.openflowhub.org/

● https://github.com/floodlight/floodlight

● http://groups.google.com/a/openflowhub.org/group/floodlight-dev/topics

http://floodlight.openflowhub.org/
http://groups.google.com/a/openflowhub.org/group/floodlight-dev/topics


  

Maestro

● Rice Univ.
● LGPL v2
● Java
● Multi threaded

● Using DAG(Directed Acyclic Graph) to exploit parallelism

● http://code.google.com/p/maestro-platform/
● http://maestro-platform.googlecode.com/svn/trunk/

● subversion

● http://groups.google.com/group/maestro-platform

http://code.google.com/p/maestro-platform/
http://maestro-platform.googlecode.com/svn/trunk/


  

Ryu

● NTT + VALinux Systems Japan K.K.
● Apatche 2.0
● Python
● OpenStack support
● Tunneling/VLan
● For details: session: June 8th 14:00-

Full disclosure: I am a core developer of Ryu 



  

Node Flow

● Cisco: Gary Berger(personal project?)
● MIT lincense
● Java script (with Node.js + oflib Node)
● http://garyberger.net/?p=537
● https://github.com/gaberger/NodeFLow

http://garyberger.net/?p=537


  

FlowER

● Travelping
● Closly working with Telcom company?

● BSD-like lisence (refer the code for details)
● Erlang
● Used as a port of their products?
● https://github.com/travelping/flower



  

Nettle

● Yale Univ.
● BSD3
● Haskel
● http://haskell.cs.yale.edu/?page_id=376
● http://www.cs.yale.edu/publications/techreports/

tr1431.pdf

http://haskell.cs.yale.edu/?page_id=376


  

Mirage

● BSD
● OCaml
● http://openmirage.org/
● https://github.com/avsm/mirage
● http://anil.recoil.org/papers/2010-hotcloud-

lamp.pdf

http://openmirage.org/
https://github.com/avsm/mirage


  

Open vSwitch: ovs-controller

● Nicira
● Apatch 2.0(ovs-controller.c itself)
● C
● Included in Open vSwitch
● simple OpenFlow controller reference 

implementation



  

Proprietary Products
(Just for completeness)

● Nicira: NVP Network Virtualization Platform
● BigSwitch: Floodlight based?
● NEC: ProgrammableFlow 
● Midokura: Midonet
● NTT Data: 
● Travelping: FlowER based?

Ask your vendors for details



  

Related Academic research



  

Onix

● Teemu Koponen, Martin Casado, Natasha Gude, and 
Jeremy Stribling, Nicira Networks; Leon Poutievski, Min 
Zhu, and Rajiv Ramanathan, Google; Yuichiro Iwata, 
Hiroaki Inoue, and Takayuki Hama, NEC; Scott Shenker, 
International Computer Science Institute (ICSI) and UC 
Berkeley

● No codes publicly available
● http://static.usenix.org/event/osdi10/tech/#wed
● http://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf
● Network Operating System
● Network Information Base(NIB)

http://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf


  

flowvisor

● Its own license (refer the repo for details)
● Java
● OF virtualization/network slicing
● http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf

● https://bitbucket.org/onlab/flowvisor

http://www.openflow.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf


  

Other researches

● RouteFlow
● https://sites.google.com/site/routeflow/

● Flowscale
● Load balancer
● http://www.openflowhub.org/display/FlowScale/FlowScale+Home

● Frenetic: model checker
● http://frenetic-lang.org/

● NICE-OF
● Symbolic Execution with Model checker
● https://www.usenix.org/system/files/conference/nsdi12/nsdi12-

final105.pdf
● http://code.google.com/p/nice-of/



  

Openflow controller to network operating system



  

Openflow protocol
parser/serializer

Event layer

Switch management

app ...

Network/distributed system
Abstruction

O
penflow

 controller

N
etw

ork O
perating S

ystem

app

proprietaryAcademic OSS



  

Openflow controller to Network OS

● Distributed programming is hard

● State distribution

● Event changing the state is hard

● react chage on network configuration and chage the switch configuration

● Calculating the switch diff based on network diff is hard

● Configuring network right is hard

● Verification?

● Model checker?

● Provide some layer for distributed programming

● Higher level network view

● Debugging environment?

– View network status by single command

– Network health check: Take network states snapshot, and run verification on it
● Or runtime check?

● Distributede database?

● Switch model

– tracking switch flows somehow

● HA, multi controllers

– Taking over switch

● Simulator?



  

Summary

● OSS Openflow controllers are very common
● The next area to investigate is to evolve from 

openflow controller to network operating system



  

Thank you

● Questions?
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