

paravirt_ops/IA64

Isaku Yamahata <yamahata@valinux.co.jp>
VA Linux Systems Japan K.K.

mailto:yamahata@valinux.co.jp

Introduction

Goal

● Merge xenLinux/IA64 modification to Linux
upstream. Both domU/dom0 support.

Old History

30 Jan, 2005 Xen and the Art of Linux/IA64 Virtualization Dan Magenheimer 2.6.12
28 Oct, 2005 virtualization hooks patch for IA64 2.6.15 Dan Magenheimer 2.6.15
03 Jun, 2006 Xen/IA64 kernel changes 2.6.17-rc5 Alex Williamson 2.6.17-rc5

● There have already been several
unsuccessful merge efforts

● So we are trying again...

What's Different This Time?

● The x86 paravirt_ops (pv_ops for short)
has been merged
– After several approaches to virtualization
support were proposed, finally the
paravirt_ops approach won

– Consensus on virtualization via source-code
API

● (Minimal) Xen/x86 has been merged
– The Xen common code is already there
– Though, portability patches would be necessary

Merging Strategy

● The first merge is the most difficult
● Basically follow the x86 approach

– Virtualization infrastructure via source code
API, i.e. paravirt_ops.

– Minimize modifications at first step
● Make patch size and the number of patches as small
as possible for code review.

– Postpone optimization where possible
– Dom0 support is also postponed

What is paravirt_ops
● The indirect layer for virutalization

– Virtualization support via source-code API
– It allows a single kernel binary to run on all
supported execution environments including
bare-metal hardware.

– It is implemented as C function pointer.
– But, it supports special optimization, binary
patching.

● Indirect calls can be transformed into a direct
call or in-place execution.

– A set of macros for assembly code
● Hand-written assembly code also needs
paravirtualization.

paravirt_ops/IA64

Challenges

● IA64 machine vectors
● Privileged instruction
(para)virtualization

● Binary patching
● Hand-written assembly code
paravirtualization

IA64 Machine Vector

● C function pointers for platform support.
– Initialization, IPI, DMA API...

● One possible approach is to enhance
machine vector.

● But paravirtualization needs more.
– Initialization at very early stage of the boot
sequence.

– Binary patch optimization.
● Paravirtualization overhead on bare metal hardware
should be as small as possible.

dig hpzx1 sn2...

paravirt_ops

dig hpzx1 sn2...

machine vector

Xen
domU

The rest of kernel code

Linux kernel

dom0

hardware

Xen Wrapper

Xen Hypervisor

Instruction (Para)Virtualization

● The main issues for IA64 is privileged
instruction paravirtualization.

● Some approaches were discussed.
– Pre-Virtualization and after-burning
– Hybrid Virtualization. Rely on hardware
support(VT-i).

– Privify. (vBlades approach)
– paravirt_ops.

Instruction
(Para)Virtualization(cont.)

Linux Change Single binary?
yes No Low No

hybrid yes No Low Yes
yes No Low No
No Yes High Yes

hyervisor change
Performance
in theory

previrtualization

privify
paravirt_ops

● With the preliminary benchmark results(the
next slides), paravirt_ops approach was
adopted.

● The re-aim-7 which was used is CPU
intensive benchmark.

Preliminary benchmark done by Alex Williamson
http://lists.xensource.com/archives/html/
xen-ia64-devel/2008-01/msg00194.html

http://lists.xensource.com/archives/html/

Binary Patch

● IA64 intrinsics(privileged instructions
used by C code.) needs binary patch
– They are performance critical.
– e.g. mask/unmask interrupts.

● But not all the hooks needs binary patch
– The hooks for high level functionalities
accepts C indirect call overheads.

– Unlike x86, we don't support binary patch for
all the hooks because...

Binary Patch(cont.)

● To allow binary patch, the call instruction
needs to be annotated. But there is no way
to write C calling conversion with GCC
extended inline assembly code.

● So other calling convention has to be used.
– Non-banked static registers(xen/ia64 like)
– Banked Static registers.(PAL call like)
– C function call like convention.

● Anyway those functions can't be written in
C.

Static registers in0...inL loc0...locM out0, out1...outN

caller_func(in0, ... inL)
loc0, ... locM
out0, ... outN

bp_func(out0, out1)
other_func(out0, out1, ... outN)

asm(“...”::: “out0”, “out1”) is bad.
Here out0, ... outN are clobbered.
No way to specify out0, ...outN
as clobbered registers where N is
unknown.

r0-r31 M, N are determined by GCC

Static registers in0, in1 loc0...locM' out0...outN'

M', N' are determined by GCCr0-r31

Clobbered registersfunc(in0,..., inL)

bp_func(in0, in1)

Function call

Hand-Written Assembly Code

● .S files
● Kernel entry(fault handler,system
call)/exit and context switch.

● Stack is not always usable.
– For example, only several registers can be
used on fault.

● They are well tuned so that it's difficult
to touch them without performance
degradation.

Hand Written Assembly Code(cont.)
● Single source file, compile multiple times
using CPP macros and Makefile tricks.

● Most of those macros 1:1 correspond to
single instruction

Native

Xen

-(p8) mov cr.itir=r25
+ MOV_TO_ITIR(p8, r25, r24)

Patch

#define MOV_TO_ITIR(pred, reg, clob) \
(pred) mov cr.itir = reg \
 CLOBBER(clob)
#define MOV_TO_ITIR(pred, reg, clob) \
(pred) movl clob = XSI_ITIR; \
 ;; \
(pred) st8 [clob] = reg

Example

Extra clobberable registers are found by careful code reading.

Switching Hand-Written Assembly
Code

● Fault handler is pointed by cr.iva
register.

● Other path is switched by indirect call.
– Clobberable registers for branch are found by
careful code reading.

native
Fault handler

xen
Fault handler

cr.iva

native
code

xen
code

wrapper

kernel entry

ia64_native_leave_kernel xen_leave_kernel

kernel exit

ivt xen_ivt

leave_kernel

PV Checker

● .S paravirtualization is fragile.
– It's very easy to write raw instruction.
– Enforce people to use paravirtualized
instructions.

● Simple checker is implemented.
– Doesn't cover all the breakage.
– most of easy breakage can be detected.

Example: cover instruction case
#define COVER nop 0
#define cover .error "cover should not be used directly."

Current Status and Future Plans

Current IA64 pv_ops
name description type
pv_info general info -
pv_init_ops initialization normal C function pointers
pv_cpu_ops privileged instructions

pv_cpu_asm_ops macros for hand-written assembly asm macros
pv_iosapic_ops iosapic related operations normal C function pointers
pv_irq_ops irq related operations normal C function pointers
pv_time_ops steal time accounting normal C function pointers

Normal C function pointers
Needs binary patch

● The resulting set of hooks is completely
different from x86's.

● That's because of architecture difference
between x86 and IA64.

Diffstat

file changed insersions deletions
pv_cpu_asm_ops 9 517 177
pv_cpu_ops 10 550 49
others 16 507 35

● This figures shows paravirt_ops/IA64
issues are in cpu instruction
paravirtualization.

Comparison with x86 pv_ops
items X86_32(2.6.26-rc6) IA64

pv_init_ops 5 6
pv_cpu_asm_ops 7 macros32 macros/6 asm labels
pv_cpu_ops 32 14
pv_mmu_ops 29 n/a
others 13 18

●Again this figure shows that paravirt_ops/IA64 relies on
hand-written assembly code paravirtualization.
●The number of IA64 pv_cpu_ops is smaller than x86's.

● On IA64 privileged register operation is done by 'mov'
instructions which is replaced by 2 function pointers.

● On the other hand on x86 many function pointers are
defined. e.g. load_cr3()

●Xen/IA64 fully virtualizes MMU so that pv_mmu_ops is
unnecessary.

Activity

Date subject comment
16 Jan, 2008 Time for hybrid virtualization? discussion
07 Feb, 2008 forward ported to linux ia64 upstream single jumbo patch
17 Feb, 2008 paravirt_ops suport in IA64 paravirt_ops discussion
21 Feb, 2008 ia64/xen domU paravirtualization split patches
24 Feb, 2008 discussion

26 Feb, 2008

28 Feb, 2008

05 Mar, 2008 started pv_ops

09 Apr, 2008 RFC: ia64/pv_ops take 4: ia64/xen domU take 4 Fully converted into pv_ops
01 May, 2008 ia64/pv_ops take 5, ia64/xen domU take 5
19 May, 2008 ia64/pv_ops take 6, ia64/xen domU take 6

10 Jun, 2008 ia64/xen domU take 7 preliminary for save/restore

ia64/xen: paravirtualization of hand written
assembly code
RFC: ia64/xen TAKE 2: paravirtualization of
hand written assembly code
RFC: ia64/pv_ops: ia64 intrinsics
paravirtualization
ia64/xen take 3: ia64/xen domU
paravirtualization

pv_ops part was merged to linux
ia64 test branch

Current status and future plan
Items status

binary patch Experimental patch existed
balloon

save/restore
free unused pages
revise boot protocol

dom0 DMA API

and more?

minimal domU pv_ops in linux IA64 test branch
Xen/domU W.I.P.(working patch,

 under review)
domU optimization more .S paravirtualization

Preliminary support.
Needs more paravirtualization

kexec/kdump

PMU/PMD/PMC(xenoprof)
mca

Acknowledgements
● Thanks to

– Eddie Dong(some of slides are cited from his
slides with modification)

– Alex Williamson(The previous Xen/IA64
maintainer)

– Akio Takebe
– Qing He
– Simon Horman
– Jeremy Fitzhardinge(The Linux xen maintainer)
– Tony Luck(The Linux IA64 maintainer)
– Dan Magenheimer(The Xen/IA64 initiator)

Thank you

● http://wiki.xensource.com/xenwiki/XenIA64/
UpstreamMerge

