paravirt ops/|A64

|saku Yamahata <yamahata@val inux. co. jp>
VA Linux Systems Japan K, K.

mailto:yamahata@valinux.co.jp

Introduction

Goal

* Merge xenLinux/1A64 modification to Linux
upstream. Both domU/domQ support.

Old History

* There have already been several
unsuccessful merge efforts

* So we are trying again...

30Jan, 2005 Xen and the Art of Linux/IA64 Virtualization | Dan Magenheimer 2.6.12
28 Oct, 2005 | virtualization hooks patch for IA64 2.6.15 Dan Magenheimer 2.6.15
03 Jun, 2006 Xen/IA64 kernel changes 2.6.17-rch Alex Williamson 2.6.17-rch

What’s Different This Time?

* The x86 paravirt ops (pv ops for short)
has been merged

— After several approaches to virtualization
support were proposed, finally the
paravirt ops approach won

— Consensus on virtualization via source-code
AP

* (Minimal) Xen/x86 has been merged

— The Xen common code I1s already there

— Though, portability patches would be necessary

Merging Strategy

* The first merge i1s the most difficult

* Basically follow the x86 approach

—Virtualization infrastructure via source code
APl, 1.e. paravirt ops.

—Minimize modifications at first step

* Make patch size and the number of patches as small
as possible for code review,

— Postpone optimization where possible

— Dom0Q support is also postponed

What 1s paravirt ops
* The Indirect layer for virutalization

— Virtualization support via source-code API

- |t allows a single kernel binary to run on all
supported execution environments including
bare-metal hardware.

- |t is implemented as C function pointer.
— But, 1t supports special optimization, binary
patching.

* Indirect calls can be transformed into a direct
call or iIn-place execution.

— A set of macros for assembly code

* Hand-written assembly code also needs
paravirtual ization.

paravirt ops/|A64

Chal lenges

|A64 machine vectors

Privileged instruction
(para)virtualization

Binary patching

Hand-written assembly code
paravirtualization

|A64 Machine Vector

* C function pointers for platform support.
- Initialization, |Pl, DMA API, ..

* One possible approach is to enhance
machine vector.

* But paravirtualization needs more.

- Initialization at very early stage of the boot
seqguence.

— Binary patch optimization.

* Paravirtualization overhead on bare metal hardware
should be as small as possible.

Linux kernel

The rest of kernel code

v

Xen Wrapper

machine vector

paravirt ops

Xen Hypervisor

dig

Y

hpzx1

Y

sn2

hardware

Instruction (Para)Virtualization

* The main issues for 1A64 is privileged
Instruction paravirtualization,

* Some approaches were discussed.

- Pre-Virtualization and after-burning

— Hybrid Virtualization. Rely on hardware
support (VT-i).

- Privify. (vBlades approach)

— paravirt ops.

Instruction
(Para)Virtualization(cont.)

Performance
hyervisor change Linux Change| in theory Single binary?
previrtualization yes No Low No
hybrid yes No Low Yes
privify yes No Low No
paravirt ops No Yes High Yes

* With the preliminary benchmark results(the
next slides), paravirt ops approach was
adopted.

* The re-aim-7 which was used is CPU
Intensive benchmark.

re-aim-7 high-systime

300000

250000

200000 A\E/\’”'hhh_u_ =
—native1
—native?
r= nativel
,E 150000 :ﬁ\g
L=, PV3
—HWM1
HVM2
—HWVM3
100000
50000 r&.—-—-—=——
1]
0 =00 1000 1500 2000 2500 3000 3500 4000 4500 5000
forks
Preliminary benchmark done by Alex Williamson
_ Max JPM % of native http://lists. xensource. com/archives/html/
MNative 242347 19 100.00% .
Para-virt 218694.95 90.24% xen—-iab64-devel/2008-01/msg00194. html

Full-virt 58289.32 24.05%

http://lists.xensource.com/archives/html/

Binary Patch

* [A64 intrinsics(privileged instructions
used by C code.) needs binary patch

— They are performance critical.

- e.g. mask/unmask interrupts.
* But not all the hooks needs binary patch

— The hooks for high level functionalities
accepts C indirect call overheads.

- Unlike x86, we don’ t support binary patch for
all the hooks because...

Binary Patch(cont.)

* To allow binary patch, the call instruction
needs to be annotated. But there 1s no way
to write C calling conversion with GCC
extended Inline assembly code.

* So other calling convention has to be used.

— Non-banked static registers(xen/ia64 |ike)
- Banked Static registers. (PAL call like)

— C function call like convention.

 Anyway those functions can’t be written in
C.

caller func(in0, ... inL)
locO, ... locM
out0, ... outN

bp func(out0, outl) -
other func(out0, outl, ...

func(in0,..., inL)

asm(“... ::: “out0 , “outl) is bad.
Here outO, ... outN are clobbered.
No way to specify out0O, ...outN

outN) as clobbered registers where N is

unknown.,

Clobbered registers

r0-r31 M, N are determined by GCC

Static registers in0...inL

loc0... locM out0O, outl...outN

Function call

4 4
Static registers in0, inl

loc0... locM outO...outN

r0-r31 M, N are determined by GCC

bp func(in0, inl)

Hand-Written Assembly Code

.S files

Kernel entry(fault handler, system
call)/exit and context switch.

Stack is not always usable,

— For example, only several registers can be
used on fault.

They are well tuned so that it's difficult
to touch them without performance
degradation,

Hand Written Assembly Code(cont.)

* Single source file, compile multiple times
using GPP macros and Makefile tricks.

* Most of those macros 1:1 correspond to
single Instruction

Example Patch -(p8) mov cr.itir=r25
+ MOV TO ITIR(p8, r25, r24)
Native ftdefine MOV TO ITIR(pred, reg, clob) \

(pred) mov cr.itir = reg
CLOBBER(clob)

Xen ftdefine MOV TO ITIR(pred, reg, clob) \
(pred) movl clob = XSI ITIR;

(pred) st8 [clob] = reg
Extra clobberable registers are found by careful code reading.

Switching Hand-Written Assembly
Code

* Fault handler 1s pointed by cr. iva

register.

* Other path is switched by indirect call.

— Clobberable registers for branch are found by
careful code reading.

cr.iva

kernel entry

- \
ivt 4 xen ivt

native
Fault handler

Xen
Fault handler

leave kernel

wrapper

/

/

. . A
1ab64 native leave kernel

native
code

xen leave kernel

xen
code

\

kernel exit

PV Checker

e .S paravirtualization is fragile,

- |t’s very easy to write raw instruction.

— Enforce people to use paravirtualized
Instructions.

e Simple checker is implemented.

— Doesn’ t cover all the breakage.
- most of easy breakage can be detected.
Example: cover instruction case

fidefine COVER nop 0
ftdefine cover .error "cover should not be used directly.”

Current Status and Future Plans

Current |1A64 pv ops

name description type

pv_info general info -

pv_init ops initialization normal C function pointers
pV_Cpu_ops privileged instructions Normal C function pointers

Needs binary patch

pv_cpu_asm ops | macros for hand-written assembly asm macros

pv_iosapic ops | iosapic related operations normal C function pointers
pv_1rq ops irg related operations normal C function pointers
pv_time ops steal time accounting normal C function pointers

* The resulting set of hooks I1s completely
different from x86 s.

* That’ s because of architecture difference
between x86 and |A64.

Diffstat

file changed insersions deletions
pV_Cpu_asm ops 9 517 177
PV _Cpu o0pSs 10 550 49
others 16 507 35

* This figures shows paravirt ops/|A64
ISSUes are In cpu instruction
paravirtualization.

Comparison with x86 pv ops

i tems X86 32(2.6.26-rc6) | AG4
pv_init ops b 6
pvV_Cpu_asm ops 7 macros32 macros/6 asm labels
PV _Cpu ops 32 14
PV _mmu_opsS 29 n/a
others 13 18

*Again this figure shows that paravirt ops/IA64 relies on
hand-written assembly code paravirtualization.

*The number of 1A64 pv cpu ops is smaller than x86’ s.

* On 1A64 privileged register operation is done by 'mov’
Instructions which is replaced by 2 function pointers.

* On the other hand on x86 many function pointers are
defined. e.g. load cr3()

*Xen/1A64 fully virtualizes MMU so that pv mmu ops is
unnecessary.

Activity

Date subject comment
16 Jan, 2008 Time for hybrid virtualization? discussion
07 Feb, 2008 forward ported to |inux ia64 upstream single jumbo patch
17 Feb, 2008 paravirt ops suport in |A64 paravirt ops discussion
21 Feb, 2008 iab4/xen domU paravirtualization split patches
24 Feb, 2008 ia64/xen: paravirtualization of hand written discussion
assembly code
26 Feb, 2008 RFC: ia64/xen TAKE 2: paravirtualization of
hand written assembly code
28 Feb, 2008 RFC: ia64/pv ops: iab4 intrinsics
paravirtualization
05 Mar, 2008 ia64/xen take 3: ia64/xen domU started pv ops
paravirtualization
09 Apr, 2008 RFC: ia64/pv ops take 4: ia64/xen domU take 4 Fully converted into pv ops
01 May, 2008 ia64/pv _ops take 5, ia64/xen domU take 5
19 May, 2008 ia64/pv _ops take 6, ia64/xen domU take 6 pv_ops part was merged to |inux
iab4 test branch
10 Jun, 2008 ia64/xen domU take 7 preliminary for save/restore

Current status and future plan

| tems

status

minimal domU

pvV_opsS

in linux IA64 test branch

Xen/domU

W.1.P. (working patch,
under review)

domU optimization

more .S paravirtualization

binary patch

Experimental patch existed

bal | oon

save/restore

Preliminary support.
Needs more paravirtualization

free unused pages

revise boot protocol

domO

DMA AP

kexec/kdump

PMU/PMD/PMC(xenoprof)

mca

and more?

Acknowledgements

* Thanks to

— Eddie Dong(some of slides are cited from his
slides with modification)

— Alex Williamson(The previous Xen/l|AG64
maintainer)

— Akio Takebe

- Qing He

= Simon Horman

- Jeremy Fitzhardinge(The Linux xen maintainer)
— Tony Luck(The Linux IA64 maintainer)

— Dan Magenheimer(The Xen/IA64 initiator)

Thank you

* http://wiki.xensource.com/xenwiki/XenlA64/
UpstreamMerge

