
Paravirt Ops on Linux IA64

Isaku Yamahata
VA Linux Systems Japan K.K.

yamahata@valinux.co.jp

Abstract

The Xen/IA64 community has been working on
IA64 paravirt ops with a view to merging the
Xen/IA64 changes into the Linux upstream tree.
Following the method used for x86, paravirt ops
was implemented and then Xen was modified to
run on top of paravirt ops. In this document firstly
paravirt ops will be reviewed and then paravirt ops
on IA64 will be discussed. In particular, why it is
necessary on IA64, differences between the x86 and
IA64 implementations, why these difference exist,
what challenges exist, and the current approaches
to those challenges. To conclude the current status
of IA64 paravirt ops will be summarized and the
future plan will be discussed.

1 Introduction

The Xen/IA64 community has been working on
IA64 paravirt ops with a view to merging the
Xen/IA64 changes into the Linux upstream tree.
Following the method used for x86, paravirt ops
was implemented and then Xen was modified to run
on top of paravirt ops.

1.1 What is paravirt ops?

paravirt ops (pv ops for short) was developed as a
method of supporting virtualization on the Linux
kernel on x86. It has been developed as an API,
not an ABI. It allows each hypervisor to override
operations which are important for that hypervi-
sor at the API level. And it allows a single kernel
binary to run on all supported execution environ-
ments including the native machine. One significant
difference from usual function pointer table is that
it allows optimizations with binary patches.

The operations of paravirt ops are classified into
three categories.

(A) Simple indirect call
These operations correspond to high level func-

Table 1: Old History
date subject author version
30
Jun,
2005

Xen and the Art
of Linux/IA64
Virtualization

Dan Magen-
heimer

2.6.12

28
Oct,
2005

virtualization
hooks patch for
IA64 2.6.15

Dan Magen-
heimer

2.6.15

03
Jun,
2006

[RFC 0/2]
Xen/IA64 ker-
nel changes
2.6.17-rc5

Alex
Williamson

2.6.17-
rc5

tionality and thus the overhead of an indirect
call isn’t very important.

(B) Indirect call which allows optimization with a
binary patch
Usually these operations correspond to low
level instructions. They are called frequently
and are performance critical. Thus low over-
head is very important.

(C) A set of macros in hand-written assembly code
Hand-written assembly code (.S files) also need
paravirtualization because they include sensi-
tive instructions or performance critical code
paths.

2 paravirt ops/IA64

2.1 Old History

The history of the merge of Xen/IA64 paravirt ops
into upstream Linux is shown in table 1. At this
time things have moved on. In particular:

• x86 pv ops has been merged

• Xen/x86 has been merged

This has made work on merging Xen/IA64 par-
avirt ops a lot easier.

1



Table 2: IA64 pv ops
name description type
pv info general info -
pv init ops initialization A
pv cpu ops privileged instruc-

tion
B

pv cpu asm ops macros for assem-
bly code

C

pv iosapic ops iosapic operations A
pv irq ops irq related opera-

tions
A

pv time op steal time account-
ing

A

2.2 Implementation

Linux/IA64 has the IA64 machine vector function-
ality which allows the kernel to switch implemen-
tations (e.g. initialization, ipi, dma api...) depend-
ing on executing platform. One approach to im-
plementing paravirt ops/IA64 would be to enhance
the machine vector. However, we adopted a pv ops
approach instead. The figure 1 shows the relation-
ship of pv ops to the machine vector and the rest
of kernels. IA64 domU is implemented as a combi-
nation of xen domU machine vector and xen domU
pv ops.

2.2.1 paravirt ops/IA64

Because of architectural differences between IA64
and x86, the resulting set of functions is very dif-
ferent from x86 pv ops as shown in table 2

2.2.2 pv cpu asm ops

To paravirtualize hand written assembly code (i.e.
.S files), the approach of single source code and com-
pile multiple times with different macros definitions
was adopted for maintenance purpose.

2.2.3 pv cpu ops

Currently this class of functions corresponds to a
subset of IA64 intrinsics that is a subset of privi-
leged instructions.

2.2.4 Binary Patching

At the time of writing these hooks are defined as C
indirect function pointers, but in order to support
binary patch optimization they will be changed us-
ing GCC extended inline assembly code. However,

it is not possible to describe all the clobbered reg-
isters for an IA64 C function call in cases. So this
is not a generic solution.

In the first phase, the binary patching feature was
abandoned because it was felt that it was difficult
to reach an agreement on the calling convention.

3 Merge

3.1 Merging Strategy

To make the merge easier, the x86 strategy was fol-
lowed. For the first merge:

• minimize modifications

• postpone optimization where possible

As a later phase, domU optimization and dom0 sup-
port (though dom0 on x86 isn’t supported yet) will
be addressed.

3.2 Resulting Patches

Table 3 shows that pv ops/IA64 relies heavlily
on hand written assembly code. The number of
pv cpu ops shows that IA64 uses fewer function
pointers than x86. This is mainly because the on
privileged registers are represented by the “mov”
instruction and thus it corresponds to a single func-
tion pointer on IA64. In contrast, on x86 such op-
perations are represented by many function point-
ers.

Another reason that pv ops/IA64 has smaller
number of hooks than x86 is that the current
pv ops/IA64 set was determined only by the re-
quirements of Xen/IA64 as is currently the only
user of pv ops/IA64. While pv ops/x86 is utilized
by many virtualization technologies including Xen,
VMWare, lguest and KVM.

Xen/IA64 fully virutualizes MMU so that it has
no pv mmu ops.

3.3 Current Status and Future Plans

Currently the paravirt op/IA64 development is at
early phase as per table 4. The first patches were
merged into the Linux/IA64 test branch and min-
imal Xen/domU patches are waiting for the next
merge window because some necessary patches are
in the x86/Xen tree so it’s necessary to sync-up
Linux/IA64 with that.

2



dig hpzx1 sn2
xen

domU

machine vector

pv_ops

Xen wrapper

XEN HYPERVISOR

dig hpzx1 sn2 hardware

Linux Kernel

...

dom0

Rest of kernel

Figure 1: the relation to machine vector

Table 3: the number of hooks in pv ops
items x86 32(2.6.26-

rc6)
IA64

pv init ops 5 6
pv cpu asm ops 7 macros 32 macros

6 asm labels
pv cpu ops 32 14
pv mmu ops 29 -
others 13 18

Table 4: IA64 pv ops status
items status

minimal domU
pv ops in linux IA64 test
Xen/domU W.I.P.

domU optimization
dom0

4 Acknowledgements

I’d like to thank those who have contributed to
paravirt ops/IA64 development. Especially Eddie
Dong, Alex Williamson (the previous Xen/IA64
maintainer), Akio Takebe, Qing He, and Simon
Horman. I’d also like to give thanks to the
Linux/Xen maintainer, Jeremy Fitzhardinge and
the Linux IA64 maintainer, Tony Luck. Finally spe-
cial thanks to the Xen/IA64 initiator, Dan Magen-
heimer.

References

[1] Rusty Russel, lguest: Implementing the lit-
tle Linux hypervisor In Preedings of the Linux
Symposium, July 2007.

[2] J. Nakajima and A.K. Mallick Hybrid-
Virtualization – Enhanced Virtualization for
Linux, in Proceeding of the Linux Symposium,
July 2007

[3] Daniel J. Magenheimer, Thomas W. Christian,
vBlades: Optimized paravirtualization for the
Itanium processor family, Proceedings of the
Thrd Virtual Machine Research and Technol-
ogy, May 2004.

[4] Havard K. F. Bjerke, HPC Virtualization with
Xen on Itanium, July 2005. http://openlab-
mu-internal.web.cern.ch/openlab-mu-
internal/Documents/Reports/Technical/Thesis HarvardBjerke.pdf

[5] Joshua LeVasseur, Volkmar Uhlig, Matthew
Chapman, Peter Chubb, Ben Leslie, Gernot
Heiser Pre-Virtualization: Slashing the Cost of
Virtualization In Fakultat fur Informatik, Uni-
versit?t Karlsruhe (TH), Technical Report 2005-
30, November 2005

[6] Joshua LeVasseur, Volkmar Uhlig, Matthew
Chapman, Peter Chubb, Ben Leslie, and Ger-
not Heiser Pre-Virtualization: Soft Layering for
Virtual Machines In Technical Report 2006-15,
Fakultat fur Informatik, Universitet Karlsruhe,
July 2006

3


	Introduction
	What is paravirt_ops?

	paravirt_ops/IA64
	Old History
	Implementation
	paravirt_ops/IA64
	pv_cpu_asm_ops
	pv_cpu_ops
	Binary Patching


	Merge
	Merging Strategy
	Resulting Patches
	Current Status and Future Plans

	Acknowledgements

