
Multi-Function PCI Pass-Through

Simon Horman <simon@valinux.co.jp>
VA Linux Systems Japan K.K.

Jun Kamada <kama@jp.fujitsu.com>
Fujitsu Limited

Japan Linux Symposium
21st – 23rd October 2009



Motivation

Aim of my work:
To enhance Xen PCI pass-through to allow multi-function devices
appear in unprivileged-domains (guests) as multi-function devices.

Aim of this presentation:
To explain what that means and some of the challenges encountered
while making it possible.



Motivation

Aim of my work:
To enhance Xen PCI pass-through to allow multi-function devices
appear in unprivileged-domains (guests) as multi-function devices.

Aim of this presentation:
To explain what that means and some of the challenges encountered
while making it possible.



Part I

Overview of PCI Pass-Through



PCI Pass-Through

Method of making a PCI function available to a guest.

KVM calls this feature PCI Device Assignment

Typically uses an IOMMU to provide isolation

Otherwise guests can use DMA to access memory they shouldn’t.

This discussion focuses on fully-virtualised guests,
although it should also be applicable to para-virtualised guests.



PCI Devices and Functions

A PCI device may include between 1 and 8 functions

Function numbers range from 0 to 7

Function 0 must always be present

Classified as single-function and multi-function devices



Single-Function PCI Device

$ lspci -s 02:02.*
02:02.0 Ethernet controller: Realtek Semiconductor Co., Ltd.

RTL-8169 Gigabit Ethernet (rev 10)



Multi-Function PCI Device

$ lspci -s 00:1d.*
00:1d.0 USB Controller: Intel Corporation

82801G (ICH7 Family) USB UHCI Controller #1 (rev 01)
00:1d.1 USB Controller: Intel Corporation

82801G (ICH7 Family) USB UHCI Controller #2 (rev 01)
00:1d.2 USB Controller: Intel Corporation

82801G (ICH7 Family) USB UHCI Controller #3 (rev 01)
00:1d.3 USB Controller: Intel Corporation

82801G (ICH7 Family) USB UHCI Controller #4 (rev 01)
00:1d.7 USB Controller: Intel Corporation

82801G (ICH7 Family) USB2 EHCI Controller (rev 01)



No Multi-Function in Unprivileged Domains

Prior to this work Xen allowed functions to be passed through as
single-function devices.

Physical Unprivileged Domain (Virtual)

00:1d.0

00:1d.1

00:1d.2

00:1d.3

00:1d.7

00:08.0

00:09.1

00:10.2

00:11.3

00:12.7



Multi-Function in Unprivileged Domains

This work allows functions of a multi-function device to be passed-through
as a multi-function device.

Physical Unprivileged Domain (Virtual)

00:1d.0

00:1d.1

00:1d.2

00:1d.3

00:1d.7

00:08.0

00:08.1

00:08.2

00:08.3

00:08.7



Xen Pass-Through Architecture

Four operations

Attachment

At unprivileged domain boot-time (static assignment)1

While unprivileged domain is running (hot-plug)

Detachment

While unprivileged domain is running (hot-unplug)

Listing of attached devices

Listing of attachable devices

1Satic assignment isn’t actually static as such devices may be hot-unplugged



Attachment and Detachment Events: xm

Privileged Domain (User-Space) Unprivileged Domain

xm xend

8

1

qemu-xen

7

2

BIOS

6

3

Kernel

5

4

1 xm is a command-line tool

Accepts commands from the end-user
Makes corresponding requests to xend



Attachment and Detachment Events: xend

Privileged Domain (User-Space) Unprivileged Domain

xm xend

8

1

qemu-xen

7

2

BIOS

6

3

Kernel

5

4

2 xend marshals information between sub-systems

Checks the pass-through commands sent by xm
Reconciles them with the current state of the system
Passes them on to qemu-xend



Attachment and Detachment Events: qemu-xen

Privileged Domain (User-Space) Unprivileged Domain

xm xend

8

1

qemu-xen

7

2

BIOS

6

3

Kernel

5

4

3 qemu-xen is used to emulate devices and control pass-through devices

Reconfigures the xen hypervisor accordingly
Triggers a corresponding ACPI event in the virtual BIOS
of the target unprivileged domain



Attachment and Detachment Events: BIOS

Privileged Domain (User-Space) Unprivileged Domain

xm xend

8

1

qemu-xen

7

2

BIOS

6

3

Kernel

5

4

4 Unprivileged domain’s virtual BIOS

Triggers a corresponding ACPI event in the kernel



Attachment and Detachment Events: Kernel

Privileged Domain (User-Space) Unprivileged Domain

xm xend

8

1

qemu-xen

7

2

BIOS

6

3

Kernel

5

4

5 Unprivileged domain’s kernel

Hot-plugs or unplugs the device
Sends an acknowledgement back to the BIOS



Attachment and Detachment Events: BIOS Ack

Privileged Domain (User-Space) Unprivileged Domain

xm xend

8

1

qemu-xen

7

2

BIOS

6

3

Kernel

5

4

6 Unprivileged domain’s virtual BIOS

Sends an acknowledgement to qemu-xen



Attachment and Detachment Events: qemu-xen ACK

Privileged Domain (User-Space) Unprivileged Domain

xm xend

8

1

qemu-xen

7

2

BIOS

6

3

Kernel

5

4

7 qemu-xen

Updates its internal state
Sends an acknowledgement to xend



Attachment and Detachment Events: xend Ack

Privileged Domain (User-Space) Unprivileged Domain

xm xend

8

1

qemu-xen

7

2

BIOS

6

3

Kernel

5

4

8 xend

Updates its internal state and that of xenstore
Sends an acknowledgement to xm



Part II

Implementation Challenges



User Interaction

Problem: Need a succinct way to describe multi-function devices

Solution: Extend BDF notation

BDF stands for Bus Device Function
Used to describe PCI and PCIe devices



Simple BDF Notation

00:02.0

PCI Bus number in hexadecimal

A colon (:)

PCI Device number in hexadecimal
Sometimes referred to as the slot number

A decimal point (.)

PCI Function number



Extended BDF Notation

Optionally prefixes simple BDF with the PCI domain2

0000:00:02.0

PCI domain number

A colon (:)

Simple BDF Notation

2PCI domains do not correspond to Xen domains



Extended BDF Notation with Virtual-Slots

Optionally suffixes extended BDF with the virtual-slot or pass-through
options to be used.

0000:00:02.0@7,msitranslate=1

Extended BDF Notation

An at-sign (@)

A virtual slot

Or any number of:

A comma (,)

An option name

An equal sign (=)

A value for the option and yes or no.

In the case where both a virtual-slot and options are specified, the
virtual-slot must come first



BDF Notation for Multi-Function

The function field is expanded to accept a comma-delimited list of:

Function numbers

A range of function numbers, denoted by:
The first function number
A hyphen (-)
The last function number

An asterisk (*)

This notation is internally expanded into groups of functions

Notation Physical Unprivileged Domain (Virtual)

00:1d.0-2 00:1d.0

00:1d.1

00:1d.2

00:08.0

00:08.1

00:08.2



BDF Notation for Multi-Function with Explicit Vfunctions

Allows control over the mapping of physical to virtual functions
Physical function numbers are replaced by function units which comprise
of:

Physical function number and optionally;

An equal sign and;

A virtual function number to use

Notation Physical Unprivileged Domain (Virtual)

00:1d.2=0-0=2 00:1d.0

00:1d.1

00:1d.2

00:08.0

00:08.1

00:08.2



Mapping Physical-Functions to Virtual-Functions

Use any virtual functions in BDF

Then, map the lowest remaining physical function to
virtual function 0 as needed

Finally, identity map the rest of the functions

Physical Unprivileged Domain (Virtual)

00:1d.1

00:1d.2

00:1d.3

00:08.0

00:08.2

00:08.3

A virtual device must always include virtual function zero



Allocating Virtual-Functions

Virtual-Functions are assigned by xm (hot-plug) or xend (boot-time
assignment) at the time BDFs are parsed

It knows which functions belong to the same device
Allows for BDF to specify virtual-functions



Allocating Virtual-Slots

Virtual-Slots are assigned by qemu-xen

It knows which slots are free

An extended devfn scheme is used

Between xm and xend
Between xend and qemu-xen
Flag is set:

qemu-xen should allocate a free slot
device/slot bits are filled in by qemu-xen

Flag is not set:

BDF specifies slots
device/slot bits read by qemu-xen

flag (bit 9) device/slot (bits 3–7) function (bits 0–2)



Device Keys

xend, qemu-xen and ACPI deal with per-function requests

Need a way to identify functions that are members of the same
function device

A key is added to the functions internal representation in xend

At this stage it is the BDF string used to specify the device
Due to insertion-time checks it is guaranteed to be unique



Attachment

1. Find all the functions with the same key

2. Order the functions so that virtual-function zero is last

3. Attach the first function

4. If there are no more functions, finish — it is a single-function device

5. Else, if the virtual-slot is to be automatically assigned

5.1 Request the virtual function of the function that was just inserted
5.2 Set the virtual-slot of all remaining functions to this value

6. Attach each of the remaining functions

qemu-xen only sends an ACPI event to the BIOS for function zero,
which is always last



Detachment

1. Find all the functions with the same key

2. Order the functions so that virtual-function zero is last

3. Detach each function

xend only sends a notification to qemu-xen for function zero,
which is always last



Conclusion

Incremental improvement to pass-through for Xen

user/xm/xend/qemu-xen interaction was
by far the most time-consuming portion

Functions from multiple virtual devices in a single multi-function
virtual-device would be interesting — possibly very broken



ACPI BIOS

Extended from 2 slots to 32

Removed arbitrary limitation in original Xen pass-through code

Extended from 1 function per slot to 8

Auto-generated the BIOS ASL code

Very repetitive
∼ 32 lines× 32 slots× 8 functions ≈ 8000 lines

Matching changes in qemu-xen

Not matching verbosity



This work was partly funded by Ministry of Economy, 

Trade and Industry (METI) of Japan as the Secure 

Platform project of Association of Super-Advanced 

Electronics Technologies (ASET).



Questions?


	Title Page
	Motivation
	Overview of PCI Pass-Through
	PCI Pass-Through
	PCI Devices and Functions
	Single-Function PCI Device
	Multi-Function PCI Device
	No Multi-Function in Unprivileged Domains
	Multi-Function in Unprivileged Domains
	Xen Pass-Through Architecture
	Attachment and Detachment Events
	xm
	xend
	qemu-xen
	BIOS
	Kernel
	BIOS Ack
	qemu-xen Ack
	xend Ack


	Implementation Challenges
	User interaction
	Simple BDF Notation
	Extended BDF Notation
	Extended BDF Notation with Virtual-Slots
	BDF Notation for Multi-Function
	BDF Notation for Multi-Function with Explicit Vfunctions

	Mapping Physical-Functions to Virtual-Functions
	Allocating Virtual-Functions
	Allocating Virtual-Slots
	Device Keys
	Attachment
	Detachment

	Conclusion
	ACPI BIOS
	Acknowledgement
	Questions?


