
dm-ioband
A disk IO bandwidth controller

Implemented as a Device-mapper Module

Hirokazu Takahashi, VA Linux Systems Japan
Ryo Tsuruta, VA Linux Systems Japan

Akio Takebe, FUJITSU LIMITED

Agenda
●Motivation & Goals
●Features
●Benchmarks
●Design and Implementation
●IO controller Mini-summit
●Future work

Motivation and Goals

Motivation
As computer hardware becomes more powerful and faster, it
makes multiple services run on a single machine and multiple
users share the use of it, then we also need to share the
bandwidth of one storage with per various kinds of groups.
●per process

●cgroup
●user/group

●per filesystem
●LUN
●partitions

●per virtual machine

LUN LUN LUN

60% 30% 10%
 weight

VM1 VM2 VM3

Goals
The requirements of the IO controller are:
●Can assign bandwidth per various kinds of groups.
●Can work with any type of block devices.
●Distribute bandwidth for each group in proportion of
weight.
●Multiple bandwidth control policies are supported.
●Minimal overhead and throughput decrease, especially
against high-end storages and SSD.
●Can work with any type of IO schedulers.

The features of dm-ioband

Stackable on any type of devices
dm-ioband is implemented as a device-mapper
driver, so it allows to provide bandwidth control by
stacking on any type of block devices.

SATA

dm-ioband

LVM

dm-ioband

RAID

dm-ioband

Various grouping
Bandwidth can be assigned on a:
●per partition basis.
●per user ID or group ID basis.
●per process ID or process group ID basis.
●per cgroup basis.

Block Device

Proportional weight controller
Bandwidth is distributed in proportion of weight of
each group.

I/O request

IO group 1

dm-ioband

IO group 2

I/O request

Weight
 33%Weight

 66%

IO group 1 can use
twice the bandwidth
of IO group 2.

Block Device

Proportional weight controller
The spare bandwidth of inactive groups is used
for active groups.

I/O request

IO group 1

dm-ioband

IO group 2

I/O request
IO group 1 can use
the whole bandwidth
of the block device.

Min and Max bandwidth controller
Bandwidth control policy is selectable. The rate
guarantee and limiting policy is also provided.

Block Device I/O request

IO group 1

dm-ioband

IO group 2

I/O request

Max 300KB/s
Min 100KB/s

Max 600KB/s
Min 100KB/s

Min and Max bandwidth controller
This policy is developed by Dong Jae Kang, an
ETRI (Electronics and Telecommunications
Research Institute in Korea) researcher, in a part
of the corset project.
More detailed information is available at:

http://www.corsetproject.net/Wiki/DiskIOController

http://www.corsetproject.net/Wiki/DiskIOController
http://www.corsetproject.net/Wiki/DiskIOController

Virtual machine support

VM1

Block Device

dm-ioband

VM2 VM3

I/O request

dm-ioband can throttle bandwidth on a per virtual
machine basis by creating IO groups which correspond
to each virtual machine's IO thread.

cgroup support
Using dm-ioband with blkio-cgroup can control
bandwidth per on a cgroup basis, even if IO
requests are buffered write and issued from a
kernel thread, such as pdflush, instead of the
process which originates the request.
Once the dm-ioband device is created, all settings
can be configured through the cgroup interface as
well as other cgroup subsystems.

Hierarchical bandwidth allocation
dm-ioband's cgroup support also allows hierarchical
bandwidth allocation.

parent
 30%

child1
 40%

child2
 20%

Bandwidth allocated from upper level

100% - (40% + 20%) = 30%
The bandwdith allocated
for the parent from the
upper level is distributed
among the parent and its
children.

Benchmarks

Benchmarks
Benchmarked with three different kinds of disk
devices.
●An ordinary SATA disk.
●A SAN storage via 4GBps Fiber-channel.
●A high performance SSD via PCI express.
This benchmark did random IOs to three groups
at the same time. The groups are assigned
weights of 10, 20 and 40 respectively.

SATA Read (Direct I/O)

SATA Read (Direct I/O)

SATA Write (Direct I/O)

SATA Write (Direct I/O)

SATA Read (Buffered I/O)

SATA Read (Buffered I/O)

SATA Write (Buffered I/O)

SATA Write (Buffered I/O)

FC-SAN Read (Direct I/O)

FC-SAN Write (Direct I/O)

SSD Read (Direct I/O)

SSD Write (Direct I/O)

Design and Implementation

Which layer is the right place?
●It should be in the block I/O layer
or in the device mapper layer to
support any type of block
devices.
●The I/O scheduler should only
focus on I/O performance.
●So we have implemented it at
the device mapper layer because
the layer is highly independent
and it can be a loadable kernel
module.

Block I/O layer

Device mapper layer

I/O scheduler

Device driver

How bandwidth is distributed?
The bandwidth control is done by token bucket
algorithm.
●Give tokens to each IO group according to proportion of
weight.
●Every I/O request consumes one or more tokens.
●An I/O group is blocked once it used up its own tokens.
●Recharge tokens when all active groups used up their
tokens.

IO group

Block Device

Blocked

token pool

IO request

Token bucket algorithm

●To gain throughput, dm-ioband will recharge
new tokens even if there are some tokens left.
●Don’t block emergency I/O requests such as
page-out requests even when the owner group
has used up its tokens.

Token bucket algorithm

cgroup support
dm-ioband uses blkio-cgroup to determine a
cgroup to which an IO request belongs. blkio-
cgroup provides two major functions:
●Set a blkio-cgroup ID to a page when a read or write
operation is requested to the page. Of course, the
buffered write to a page is also handled properly.
●Retrieve a blkio-cgroup ID from a page when dm-ioband
gets an IO request.

blkio-cgroup

process

page

blkio-cgroup sets an ID to a page when a process
requests a page or the page is marked dirty.

ID

page

ID

page

ID

page page page

blkio-cgroup
When dm-ioband get an IO request., dm-ioband
can determine to which cgroup a bio belongs and
charge it to a correspondent group properly.

bio page
1

bio page
2

bio page
1

bio page
3

bio page
3

IO group 1 IO group 2 IO group 3

blkio-cgroup

page
cgroup

memory
cgroup

page

blkio
cgroup

DiskI/O

The data structure of blkio-cgroup.

bio

IO controller Mini-summit

IO controller Mini-summit
There were so many proposals of IO controller
and had not reached a consensus.

VFS

Block I/O

CFQ, NOOP, AS...

cgroup (memcg) dm-ioband

Andrea's
io-throttleVivek's

io-controller

other CFQ
based

controllers

blkio-cgroup

IO controller Mini-summit
The mini-summit is held on Oct 17th (The day
before the kernl summit) to discuss a future
prospect/direction of development of IO controller.

Some kernel maintainers and IO controller
developers were gathered to discuss.

Andrea was absent, but he emailed to all
attendees prior to the mini-summit. His opinion is
hard-limited IO control is necessary for pay-per-
use-services.

IO controller Mini-summit
We have reached a consensus on:
•Implement both request-based controller and bio-based
controller to meet all IO controlling needs. And dirty-ratio
implement at cgroup.

VFS

Block I/O

CFQ, NOOP, AS...

cgroup (memcg)

bio-based

request-based

dirty-ratio
per cgroup

IO controller Mini-summit

memory

•Cooperate with VM layer to control buffered(delayed) writes .

cgroup1
 30%
cgroup2
 10%
cgroup3
 60%

cgroup1
 30%

cgroup2
 10%

cgroup3
 60%

At the VM layer,
limit the # of dirty
pages per cgroup
 and
track which cgroup
makes pages dirty.

IO controller Mini-summit

memory

•Cooperate with VM layer to control buffered(delayed) writes .

The VM layer kicks
off pdflush to write
out the pages when
the # of dirty pages
hits the limit.

The IO controller
throttles the write-out
of pages.

cgroup2
 10%

cgroup1
 30%

cgroup2
 10%

cgroup3
 60%

IO controller Mini-summit
Both bio-based and request-based controller will
be implemented, but users don't need to care the
difference of two controllers.

•Even when the two controllers are enabled, the new
IO controllers avoid starvation, priority inversion
issues, and so on.

•Provide a single configuration interface.
•Selectable scheduling policy: proportional weight,

bandwidth gurantee and limit, and anything users
want.

IO controller Mini-summit
Roadmap

•Make CFQ cgroup aware scheduler and add basic
cgroup infrastructures (target 2.6.33 or 2.6.34)

•Once the new CFQ based scheduler is merged to
mainline, then start work on bio-based controller and
buffered write control. (can be done in parallel)

IO controller Mini-summit
The topics and the conclusions of this summit
can be referred at the IO controller Mini-summit
web site.
http://sourceforge.net/apps/trac/ioband/wiki/iosummit

Finally, We could get on the same boat of
developing IO controller!!

http://sourceforge.net/apps/trac/ioband/wiki/iosummit

Future work

Future work
•Re-implement dm-ioband's algorithm into the

block later. It makes dm-tools no longer
required.

• Try to fix the known issues, especially
cooperation with the IO scheduler.

•Improve the performance for SAN storages,
SSD and upcoming storage devices.

Linux Block IO Bandwidth Controller Project.
ETRI and VA Linux have launched a project for
the development of block IO bandwidth controller
on Linux at SourceForge.net. More information of
dm-ioband and blkio-cgroup is available at:
http://sourceforge.net/apps/trac/ioband/

Please join the project if you are interested in!

http://sourceforge.net/apps/trac/ioband/
http://sourceforge.net/apps/trac/ioband/
http://sourceforge.net/apps/trac/ioband/

This work was partly funded Ministry of Economy,
Trade and Industry (METI) of Japan as the Secure
Platform Project of Association of Super-Advanced
Electronics Technologies (ASET).

Thank you!

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50
	ページ 51
	ページ 52

