
Network Bandwidth Isolation
LinuxCon North America 2010

Simon Horman <simon@valinux.co.jp>

10th–12th August 2010

Outline

Part I: Overview

Part II: Identifying Packets

Part III: Packet Scheduling

Part IV: Interesting Problems

Part I

Overview

Motivation

Fairness

Wish to ensure that each domain received a fair share of
network-related resources

As defined by the administrator

Guard against malicious domains

Guard against domains that have been infected by a virus

Assumptions

Frame for discussion

Xen — Though this ought to be applicable to KVM

Network is bridged in dom0

Dom0 is running Linux

Only discuss transmit path

Network-Related Resources

NIC Bandwidth

How fast packets are being transmitted and received by domUs

Dom0 CPU

How fast packets are being transmitted and received by domUs

Dom0 Kernel memory

How many packets are held in the kernel

Packet Scheduling

Prioritise packets based on domain

NIC Bandwidth
Dom0 CPU

Drop packets if a domain has too many enqueued

Dom0 Kernel memory usage

Netback/Netfront Flow Control

End-to-end flow control from netfront until a packet is transmitted by
the destination interface

Allows packet scheduling to control network-related resource usage

dom0 CPU
dom0 Kernel memory

Dom0

Physical NIC DriverNetworking CoreNetback

DomU

Netfront

skb

fragment

free list

skb

fragment

skb

fragment

packet

fragment

meta-data

ring-buffer

slot 1

slot 2

...

Part II

Identifying Packets

Bridged Xen Network

DomU

DomU

DomU

Dom0
eth0

vif0.0

eth0 vif1.0

eth0

vif2.0

eth0

(bridge)
peth0 network

Three domUs bridged to a single physical interface

Tools of the trade

iptables

Can mark packets passing through interfaces

Keys can include source MAC address and interface

DomU Transmit: Identifying Packets

DomU

DomU

DomU

Dom0
eth0

vif0.0

eth0 vif1.0

eth0

vif2.0

eth0

(bridge)
peth0 network

Match the interface from which packets enter eth0 (bridge)

Identifies the source-domU

DomU Transmit: iptables Rules

Mark the packets according to which interface they arrive on

iptables -t mangle -A FORWARD -m physdev \

--physdev-in vif2.0 -j MARK --set-mark 100

iptables -t mangle -A FORWARD -m physdev \

--physdev-in vif3.0 -j MARK --set-mark 110

iptables -t mangle -A FORWARD -m physdev \

--physdev-in vif5.0 -j MARK --set-mark 120

Part III

Packet Scheduling

Packet Scheduling

Filter

Assign to a class

Prioritise

Based on class assignment
May selectively delay packets

Queue

For transmission after filtering or prioritisation

Drop

If a queue becomes full

DomU Transmit Control

How many packets are held in the dom0 kernel

Limited by the number of netback ring-buffer slots

p ≤ n

where: p: transmit packets enqueued in dom0 for vifN.M
n: netback ring-buffer slots (default = 256)

DomU Transmit Control

How fast packets are transmitted

Delaying packets in dom0 should be sufficient

Dropping packets may actually be harmful

Holding onto packets actually slows down domU

Borrowing

Allow classes exceed their rate if there is unused bandwidth

rate: Maximum rate a class and its children are guaranteed

ceil: Maximum rate at which a class can send, if its parent has
bandwidth to spare

tc-htb(8) man page

DomU Transmit: Packet Scheduling Hierarchy

1100: pfifo
 limit 1000p

1110: pfifo
 limit 1000p

1120: pfifo
limit 1000p

1130: pfifo
limit 1000p

1: htb

1:1 htb
rate 900Mbit
ceil 900Mbit

1:100 htb
rate 500Mbit
ceil 900Mbit

1:110 htb
rate 100Mbit
ceil 900Mbit

1:120 htb
rate 100Mbit
ceil 900Mbit

1:130 htb
rate 100Mbit
ceil 900Mbit

Tools of the Trade

tc

Used to configure traffic control
Configure filters
Configure packet scheduling

DomU Transmit: HTB Rules: Root and Inner Classes

Root Class

tc qdisc add dev peth0 root handle 1: htb default 130

Inner Class

To allow Borrowing

tc class add dev peth0 parent 1: classid 1:1 htb \

rate 900Mbit ceil 900Mbit

DomU Transmit: HTB Rules: Leaf Classes

Leaf Classes

One per domain + default

tc class add dev peth0 parent 1:1 classid 1:100 htb \

rate 500Mbit ceil 900Mbit

tc class add dev peth0 parent 1:1 classid 1:110 htb \

rate 100Mbit ceil 900Mbit

tc class add dev peth0 parent 1:1 classid 1:120 htb \

rate 100Mbit ceil 900Mbit

tc class add dev peth0 parent 1:1 classid 1:130 htb \

rate 100Mbit ceil 900Mbit

DomU Transmit: FIFO Rules

Terminate each leaf class with a fifo

The default is a PFIFO, made explicit by the following rules

tc qdisc add dev peth0 parent 1:100 handle 1100: \

pfifo limit 1000

tc qdisc add dev peth0 parent 1:110 handle 1110: \

pfifo limit 1000

tc qdisc add dev peth0 parent 1:120 handle 1120: \

pfifo limit 1000

tc qdisc add dev peth0 parent 1:130 handle 1130: \

pfifo limit 1000

DomU Transmit: Filter

Filter based on the fwmark set by iptables

handle N is the fwmark match

flowid X:Y is the class to assign the packet to match

tc filter add dev peth0 protocol ip parent 1: \

handle 100 fw flowid 1:100

tc filter add dev peth0 protocol ip parent 1: \

handle 110 fw flowid 1:110

tc filter add dev peth0 protocol ip parent 1: \

handle 120 fw flowid 1:120

Part IV

Interesting Problems

Problem 1: UDP, VLANs and Lack of Flow Control

Problem

VLAN devices do not support scatter-gather

This means the that each skb needs to be linearised and thus cloned
if they are trasmitted on a VLAN device

Cloning results in the original fragments being released

This breaks Xen’s netfront/netback flow-control

Result

A guess can flood dom0 with packets

Very effective DoS attack on dom0 and other domUs

Problem 1: UDP, VLANs and Lack of Flow Control

Work-Around

Use the credit scheduler to limit the rate of a domU’s virtual interface
to something close to the rate of the physical interface

vif = ["mac=00:16:36:6c:81:ae,bridge=eth4.100,

script=vif-bridge,rate=950Mb/s"]

Still uses quite a lot of dom0 CPU if domU sends a lot of packets

But the DoS is mitigated

Problem 1: UDP, VLANs and Lack of Flow Control

Partial Solution

scatter-gather enabled VLAN interfaces

Problem is resolved for VLANS with supported physical devices

Still a problem for any other device that doesn’t support
scatter-gather

Problem 1: UDP, VLANs and Lack of Flow Control

Patches

Included in v2.6.26-rc4

”Propagate selected feature bits to VLAN devices” and;
”Use bitmask of feature flags instead of seperate feature bit” by
Patrick McHardy.
”igb: allow vlan devices to use TSO and TCP CSUM offload” by
Jeff Kirsher

Patches for other drivers have also been merged

http://kerneltrap.org/mailarchive/linux-netdev/2008/5/21/1898674

http://kerneltrap.org/mailarchive/linux-netdev/2008/5/23/1922094

http://kerneltrap.org/mailarchive/linux-netdev/2008/6/5/2037984

http://kerneltrap.org/mailarchive/linux-netdev/2008/5/21/1898674
http://kerneltrap.org/mailarchive/linux-netdev/2008/5/23/1922094
http://kerneltrap.org/mailarchive/linux-netdev/2008/6/5/2037984

Problem 2: Bonding and Lack of Queues

Problem

The default queue on bond devices is no queue

This is because it is a software device, and generally queuing doesn’t
make sense on software devices

qdiscs default the queue-length of their device

Result

It was observed that netperf TCP STREAM only achieves
45-50Mbit/s when controlled by a class with a ceiling of 450Mbit/s

A 10x degredation!

Problem 2: Bonding and Lack of Queues

Solution 1a

Set the queue length of the bonding device before adding qdiscs

ip link set txqueuelen 1000 dev bond0

Solution 1b

Set the queue length of the qdisc explicitly

tc qdisc add dev bond0 parent 1:100 handle 1100: \

pfifo limit 1000

Problem 3: TSO and Lack of Accounting Accuracy

Problem

If a packet is significantly larger than the MTU of the class,
is is accounted as being approximately the size of the MTU

And the giants counter for the class is incremented

In this case, the default MTU is 2047 bytes

But TCP Segmentation Offload (TSO) packets can be much larger

64kbytes

By default Xen domUs will use TSO

Result

The result similar to no bandwidth control of TCP

Problem 3: TSO and Lack of Accounting Accuracy

Details

ceil log is a logarithmic scaling value used when accounting the
cost of a packet.

mtu = 2047; #default

cell_log = 0;

while (mtu >> cell_log) > 255)

cell_log++;

Code has been simplified for the sake of brevity

Problem 3: TSO and Lack of Accounting Accuracy

Details

rtab is a lookup table of packet costs

for (i = 0; i < 256; i++) {

size = (i + 1) << cell_log;

rtab[i] = TIME_UNITS_PER_SEC * size / rate;

}

rtab is looked up using packet size >> cell log as the index

Where the index is truncated to 255

Code has been simplified for the sake of brevity

Problem 3: TSO and Lack of Accounting Accuracy

Workaround 1

Disable TSO in the guest

...but the guest can re-enable it

ethtool -k eth0 | grep "tcp segmentation offload"

tcp segmentation offload: on

ethtool -K eth0 tso off

ethtool -k eth0 | grep "tcp segmentation offload"

tcp segmentation offload: off

Problem 3: TSO and Lack of Accounting Accuracy

Workaround 2

Set the MTU of classes to 40000

Large enough to give sufficient accuracy
Larger values will result in a loss of accuracy when accounting smaller
packets

tc class add dev peth2 parent 1:1 classid 1:101 \

rate 10Mbit ceil 950Mbit mtu 40000

http://kerneltrap.org/mailarchive/linux-netdev/2009/11/2/6259456

http://kerneltrap.org/mailarchive/linux-netdev/2009/11/2/6259456

Problem 3: TSO and Lack of Accounting Accuracy

Solution

Account for large packets

Instead of truncating the index, use rtab values multiple times

rtab[255] * (index >> 8) + rtab[index & 0xFF]

”Make HTB scheduler work with TSO” by Ranjit Manomohan was
included in 2.6.23-rc1

http://kerneltrap.org/mailarchive/linux-netdev/2007/12/11/488315

http://kerneltrap.org/mailarchive/linux-netdev/2007/12/11/488315

Conclusion

Existing infrastructure can be used for network bandwidth control

The key is to be able to identify packets

And then design an appropriate class hierarchy

But there are some subtle traps — testing is vital

Questions

	Title Page
	Outline
	Overview
	Motivation
	Assumptions
	Network-Related Resources
	Packet Scheduling
	Netback/Netfront Flow Control

	Identifying Packets
	Bridged Xen Network
	Tools of the trade
	DomU Transmit: Identifying Packets
	DomU Transmit: iptables Rules

	Packet Scheduling
	Packet Scheduling
	DomU Transmit Control
	Borrowing
	DomU Transmit: Packet Scheduling Hierarchy
	Tools of the Trade
	DomU Transmit: HTB Rules: Root and Inner Classes
	DomU Transmit: HTB Rules: Leaf Classes
	DomU Transmit: FIFO Rules
	DomU Transmit: Filter

	Interesting Problems
	Problem 1: UDP, VLANs and Lack of Flow Control
	Problem 2: Bonding and Lack of Queues
	Problem 3: TSO and Lack of Accounting Accuracy

	Conclusion
	Conclusion

	Questions
	Questions

