
  

* Isaku Yamahata, VALinux Systems Japan K.K. <yamahata@private.email.ne.jp>
  Takahiro Hirofuchi, AIST <t.hirofuchi@aist.go.jp>

LinuxConJapan June 7th, 2012

Yabusame:
Postcopy Live migration for QEmu/KVM

mailto:yamahata@private.email.ne.jp


  

Agenda

From wikipedia

● Demo
● Precopy vs Postcopy
● Implementation
● Evaluation
● Future work
● Summary

This work is partly supported by JST/CREST ULP and KAKENHI (23700048).
The development of Yabusame was partly funded by METI (Minister of Economy,
Trade and Industry) and supported by NTT Communications Corporation. 

Yabusame is a joint project with Takahiro Hirofuchi, AIST and Satoshi Itoh, AIST.



  

Demo



  

Precopy vs Postcopy



  

Precopy live migration
1.Enable dirty page tracking

2.Copy all memory pages to destination

3.Copy memory pages dirtied during the 
previsou copy again

4.Repeat the 3rd step until the rest of 
memory pages are enough small.

5.Stop VM

6.Copy the rest of memory pages and 
non-memory VM states

7.Resume VM at destination 

Repeat this step



  

Postcopy live migration

1.Stop VM

2.Copy non-memory VM states 
to destination

3.Resume VM at destination

4.Copy memory pages on-
demand/backgroundly
• Async PF can be utilized

Copy memory pages
●On-demand(network fault)
●background(precache)



  

Asynchronous Page Fault(APF)

Guest RAM

1. Page fault

KVM   

5.Start IO 6. IO completion

AFP can be utilized for postcopy

1.Guest RAM as host page can be 
swapped out(or on the src machine 
in case of postcopy)

2.When the page is faulted, worker 
threads starts IO

3.Notify it to (PV) guest

4.Guest blocks the faulting thread 
and switches to another thread

5.When IO is completed, it is 
notified to guest

6.Unblock the previously blocked 
thread Work queue

Thread A Thread B

4. switch

2. pass page
Request to
work queue

3 notify
APF to guest  

7. notify
IO completion

8.unblock



  

Precopy
Round 1

Remaining
Dirty pagepr

ep
ar
a

ti
on ...

VM
 s
ta

te

re
st
ar
t

Round 2 Round N stop

Down time

Total migration time

pr
ep
ar
a

ti
on

VM
 s

ta
te

re
st
ar
t

stop

Total migration time

Down time

Postcopy
Demand/pre paging(with async PF)

resume

resume

Precopy

Postcopy

Performance degradation
Due to dirty page tracking

Performance degradation
Due to network fault

time

Copy VM memory before switching the execution host

Copy VM memory after switching the execution host

Total migration/down time



  

Precopy vs Postcopy

precopy postcopy

Total migration time (RAM size / link speed) +
overhead +
Non-deterministic
Depending on precopy rounds

(RAM size / link speed) + 
ovedrhead

Worst downtime (VMState time) +
(RAM size/link speed)

The number of dirtied pages 
can be optimized by ordering 
pages sent in precopy phase

VMState time
Followed by postcopy phase

Postcopy time is limited by
(RAM size/link speed)
Alleviated by
Prepaging + AsyncPF



  

Precopy live migration
● Total migration time and downtime depend 
on memory dirtying speed
● Especially the number of dirty pages doesn't 
converge when dirtying speed > link speed

Downtime Analysis for Pro-Active Virtual Machine 
Live Migration : Felix Salfner
http://www.tele-task.de/archive/video/flash/13549/



  

Postcopy is applicable for

● Planned maintenance
● Predictable total migration time is important

● Dynamic consolidation
● In cloud use case, usually resources are over-
committed

● If machine load becomes high, evacuate the VM 
to other machine promptly
– Precopy optimization (= CPU cycle) may make things 
worse



  

Postcopy characteristic
● network bandwidth

● Postcopy transfer a page only once
● LAN case: Not all network bandwidth can be used for migration

– network bandwidth might be reserved

● non-LAN case: Inter-Datacenter live-migration
– L2 connectivity among datacenters with L2 over L3 has becoming common

– VM migration over DCs as Disaster Recovery

● reliability
● VM can be lost if network failure during migration occurs



  

Implementation



  

Hooking guest RAM access
● Design choice

● Insert hooks all accesses to guest RAM
● Character device driver (umem char device)

– Async page fault support
● Backing store(block device or file)
● Swap device

Pros Cons

Modify VMM portability impractical

Backing store No new device driver Difficult future improvement
Some kvm host features wouldn't work

Character Device Straight forward
Future improvement

Need to fix kvm host features

Swap device Everything is normal after 
migration

Administration
Difficult future improvement



  

qemu-kvm

character
device

qemu-kvm

guest RAM
vma::fault
2. page fault is hooked by
Character device. 

destination

daemon

3. Request for page
1. access to
guest RAM

4. page contents is sent back
Connection for live-migration
is reused

5. page contents
is passed down to
the driver

Host kernel

6. resolve page fault

0. mmap()

source

Implementation

guest RAM

Host kernel



  

Evaluation



  

Memory scanning with postcopy
● 6GB memory Guest RAM

● 4thread

● Per-thread
● 1GB

● Each thread accessing all pages

● Time from the first page access to 
the last page access

● Start each thread right after 
starting post-copy migration

● Background transfer is disabled
Host OS(dst)

1GB ether

1GB 1GB

...

...

Guest VM after switching execution

Memory scan

Thread 1 Thread 4

Host OS(src)



  

Memory scan time(real)



  

VCPU execution efficiency is improved cpu-time/real-time
APF enabled:  0.7
APF disabled: 0.39

Total CPU time allocated to guest VM



  

Analyze with SystemTap

Serving page fault

Serving page fault

vCPU execution

vCPU execution

vCPU is executing during page is being served

vCPU can't be executed
while page is being served



  

Siege benchmark with Apache
● Host

● Core2 quad CPU Q9400 4core

● Memory 16GB

● Qemu/kvm

● Vcpu = 4, kernel_irqchip=on

● Memory about 6G(-m 6000)

● virtio

● Apache

● Prefork 128 process fixed

● Data: 100K * 10000files = about 1GB

● Warm up by siege before migration

– So all data are cached on memory

● Siege

● http load testing and benchmarking utility

● http://www.joedog.org/siege-home/

● 64 parallel (-c 64)

● Random URL to 10000 URLs

Host(src) Host(dst)

Apache
Prefork

128 process

Guest VM

migration

Client machine

siege

https

GB

GB



  

Precopy
Migrate set_speed=1G

Postcopy w/o background transfer
Prefault forward=100
migrate -p -n tcp:10.0.0.18:4444 100 0 

Precopy Postcopy



  

Future work
● Upstream merge

● QEmu/KVM Live-migration code needs more love

–
Code clean up, Feature negotiation...

● Investigate for fuse version of umem device and evaluation

–
See if it's possible and its performance is acceptable

● Evaluation/benchmark

● KSM and THP

● Threading

● Page compression(XBRZLE) is coming. Non-blocking read + checking if all data is ready is impractical for compressed 
page any more.

● Mix precopy/postcopy 

● Avoid memory copy

● Not to fetch pages when writing/clearing whole page

● cleancache/frontswap might be good candidate

● Free page aren't necessary to be transferred

–
Self-ballooning?

● Hint via PV interface?

● Libvirt support?(and Openstack?)

● Cooperate with Kemari



  

Thank you
● Questions?

● Resources
● Project page

– http://grivon.apgrid.org/quick-kvm-migration

– http://sites.google.com/site/grivonhome/quick-kvm-migration                      

● Enabling Instantaneous Relocation of Virtual Machines with a Lightweight VMM Extension: 
proof-of-concept, ad-hoc prototype. not a new design

– http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-paper.pdf

– http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-talk.pdf

● Reactive consolidation of virtual machines enabled by postcopy live migration: advantage for 
VM consolidation

– http://portal.acm.org/citation.cfm?id=1996125

– http://www.emn.fr/x-info/ascola/lib/exe/fetch.php?media=internet:vtdc-postcopy.pdf

● Qemu Wiki

– http://wiki.qemu.org/Features/PostCopyLiveMigration

● Demo video

– http://www.youtube.com/watch?v=lo2JJ2KWrlA

http://www.joedog.org/siege-home/


  

Backup slides



  Real-Time Issues in Live Migration of Virtual Machines
http://retis.sssup.it/~tommaso/publications/VHPC09.pdf


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

