Yabusame:
Postcopy Live migration for QEmu/KVM

* Isaku Yamahata, VALinux Systems Japan K.K. <yamahata@private.email.ne.jp>
Takahiro Hirofuchi, AIST <t.hirofuchi@aist.go.jp>

LinuxConJapan June 7%, 2012

mailto:yamahata@private.email.ne.jp

Agenda

* Demo
* Precopy vs Postcopy A"Ti;ﬁéﬁi“éf
e Implementation NF
e Evaluation

e Future work

o Summary S
From wikipedia
Yabusame 1is a joint project with Takahiro Hirofuchi, AIST and Satoshi Itoh, AIST.
This work 1s partly supported by JST/CREST ULP and KAKENHI (23700048).

The development of Yabusame was partly funded by METI (Minister of Economy,

Trade and Industry) and supported by NTT Communications Corporation.

Demo

A VM with 1GB RAM is live-migrated
to the right PC.

Yabusame Live Migration
(Developed by AIST)

Normal Live Migration

Precopy vs Postcopy

Precopy live migration

1.Enable dirty page tracking

2.Copy all memory pages to destination

3.Copy memory pages dirtied during theO Repeat this step
previsou copy again

4.Repeat the 3™ step until the rest of
memory pages are enough small.

6.Copy the rest of memory pages and

non-memory VM states V

..oootooot.

7.Resume VM at destination

PR L B B BN BN I N NN

®*sevsveee®

Machine A Machine B

Postcopy live migration

1.5top VM

2.Copy non-memory VM states
to destination

RAM

5.Resume VM at destination

4.Copy memory pages on-
demand/backgroundly Machipe A

- Async PF can be utilized

Copy memory pages
eOn-demand(network fault)
ebackground(precache)

Asynchronous

AFP can be utilized for postcopy

1.Guest RAM as host page can be
swapped out(or on the src machine
in case of postcopy)

2.When the page 1s faulted, worker 1.

threads starts I0
3.Notify it to (PV) guest

4.Guest blocks the faulting thread
and switches to another thread

5.When I0 is completed, it 1is
notified to quest

6.Unblock the previously blocked
thread

Page Fault(APF)

4. switch

8.unblock

Page fault 5 notify /. notify
APF to guest I0 completion
Guest RAM

2. pass pagx

Request to
work queue

Work queue

'

5.Start I0 6. IO completion

Total migration/down time

Copy VM memory before switching the execution host

Round 2 \Round N \ stop

Precopy
Precopy Round 1 "

Performance degradation
Due to dirty page tracking

resume

N

Down time

Total migration time

time
stop resume
Postcopy
Postcopy Demand/pre paging(with async PF)
= :
Down time Performance degradation

Due to network fault

Total migration time
Copy VM memory after switching the execution host

Total migration time

Worst downtime

precopy

(RAM size / link speed) +
overhead +
Non-deterministic

Depending on precopy rounds

(VMState time) +
(RAM size/link speed)

The number of dirtied pages
can be optimized by ordering
pages sent in precopy phase

Precopy vs Postcopy

postcopy

(RAM size / link speed) +
ovedrhead

VMState time
Followed by postcopy phase

Postcopy time is limited by
(RAM size/link speed)
Alleviated by

Prepaging + AsyncPF

180

— e— e
N b O
o O O

100

Migration time (s)

20
0

80
60 |
40

Precopy live migration
Total migration time and downtime depend
on memory dirtying speed

» Especially the number of dirty pages doesn't
converge when dirtying speed > link speed

Results for ProxmoxVE (KVM) £}

\\\\\\\

Total migration time Downtime

Migration time depends on
memory update speeds.

Virtual RAM = 2GB

Virtual RAM = 8GB

0O 1000 2000 3000 4000 5000 6000 7000 8000 Downtime Analysis for Pro-Active Virtual Machine

Live Migration : Felix Salfner

Memory update Speed (pages/s) http://www.tele-task.de/archive/video/flash/13549/

Postcopy 1s applicable for

« Planned maintenance
e Predictable total migration time 1s important
« Dynamic consolidation

 In cloud use case, usually resources are over-
committed

« If machine load becomes high, evacuate the VM
to other machine promptly

- Precopy optimization (= CPU cycle) may make things
worse

Postcopy characteristic

e network bandwidth

« Postcopy transfer a page only once

o LAN case: Not all network bandwidth can be used for migration
- network bandwidth might be reserved

« non-LAN case: Inter-Datacenter live-migration

— L2 connectivity among datacenters with L2 over L3 has becoming common

- VM migration over D(Cs as Disaster Recovery

e reliability

« VM can be lost if network failure during migration occurs

Implementation

Hooking guest RAM access
* Design choice

* Insert hooks all accesses to guest RAM

 Character device driver (umem char device)
- Async page fault support
« Backing store(block device or file)

« Swap device

Pros Cons
Backing store No new device driver Difficult future improvement
Some kvm host features wouldn't work

Swap device Everything is normal after Administration
migration Difficult future improvement

Implementation

4. page contents 1s sent back
Connection for live-migration
1s reused

; >
qemu-kvm

3. Request for page

Host kernel

source

daemon gemu-kvm
A 5. page contents @. mmap()
1s passed down to 1. access to
the driver guest RAM
Y 6. resolve page fault
character
device =
vma: :fault
2. page fault is hooked by
Host kernel Character device.

destination

Evaluation

Memory scanning with postcopy

6GB memory Guest RAM
4thread

Per-thread
. 1GB
« Each thread accessing all pages

. Time from the first page access to
the last page access

Start each thread right after
starting post-copy migration

Background transfer is disabled

Host 0S(src)

Thread 1) =% (Thread 4
I IR N N
1GB 1GB
> Host 0S(dst)

1GB ether

seconds

400

350

300

250

200

150

100

50

Memory scan time(real)

[N

async PF on I
async PF off s

& D o
@ @ @

*‘5\@4‘@“

'b fe:» &
a"‘" @ @

"F“@“&‘*@“

W Uptime (s)

Total CPU time allocated to

guest VM

120 I | |

APF Enabled

100 APF Disabled .
80 - .
60 .
40 - .
20 + .

o L | . | | | | |
0 50 100 150 200 250 300 350

Time (s)

VCPU execution efficiency 1s improved cpu-time/real-time
APF enabled: 0.7
APF disabled: 0.39

400

Analyze with SystemTap

vCPU 1is executing during page 1s being served

Serving page fault

vCPU execution

100.0000 100.0002 100.0004

Time (s)

4 ¢

vCPU can't be executed
. while page 1is being served,

Serving page fault

vCPU execution

100.0000 100.0002 100.0004

Time (s)

Siege benchmark with Apache

. Host

. Core2 quad CPU Q9400 4core GB

. Memory 16GB

. Qemu/kvm

. Vcpu = 4, kernel_irqchip=on migration

. Memory about 6G(-m 6000)

. Vvirtio

. Apache | —_
. Prefork 128 process fixed | Prefork
. Data: 100K * 10000files = about 1GB : 28 proces
. Warm up by siege before migration Host(src) Host(dst)

_ So all data are cached on memory

. Siege

. http load testing and benchmarking utility

. http://www.joedog.org/siege-home/ | GB

. 64 parallel (-c 64)
. Random URL to 10000 URLs

Client machine

regquests

350

300
250
200
150
100

50

0
05:40 05:50 06:00 06:10

time(%M:%S)

Precopy
Migrate set_speed=1G

Precopy

06:20

06:30

06:40

reguests

350

Postcopy

300

250

200

150

100

50

0
52:10 52:20 52:30 52:40 52:50 53:00 53:10

time(%M:%S)
Postcopy w/o background transfer
Prefault forward=100
migrate -p -n tcp:10.0.0.18:4444 100 0

Future work

. Upstream merge

. QEmu/KVM Live-migration code needs more love
_ Code clean up, Feature negotiation...

. Investigate for fuse version of umem device and evaluation
_ See if it's possible and its performance is acceptable

. Evaluation/benchmark
. KSM and THP
. Threading

. Page compression(XBRZLE) is coming. Non-blocking read + checking if all data is ready is impractical for compressed
page any more.

. Mix precopy/postcopy
. Avoid memory copy
. Not to fetch pages when writing/clearing whole page

. Cleancache/frontswap might be good candidate

. Free page aren't necessary to be transferred
_ Self-ballooning?

. Hint via PV interface?

. Libvirt support?(and Openstack?)

. Cooperate with Kemari

Thank you

« Questions?
« Resources
« Project page
_ http://grivon.apgrid.org/quick-kvm-migration
_ http://sites.google.com/site/grivonhome/quick-kvm-migration

Enabling Instantaneous Relocation of Virtual Machines with a Lightweight VMM Extension:
proof-of-concept, ad-hoc prototype. not a new design

_ http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-paper.pdf
_ http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-talk.pdf

« Reactive consolidation of virtual machines enabled by postcopy live migration: advantage for
VM consolidation

_ http://portal.acm.org/citation.cfm?1d=1996125
_ http://www.emn.fr/x-info/ascola/lib/exe/fetch.php?media=internet:vtdc-postcopy.pdf

Qemu Wiki

_ http://wiki.qgemu.org/Features/PostCopylLiveMigration

« Demo video
_ http://www.youtube.com/watch?v=102JJ2KWr1A

http://www.joedog.org/siege-home/

Backup slides

A VM is characterized by a set of memory pages {p1,...,py} assumed for
simplicity to be of fixed size equal to P bytes. Assume the bandwidth available for
the transfer is constant and equal to b bytes per second (this is possible by using
the techniques described in Section 4), and let T denote the time interval needed
to transfer a single page T = &Eﬁ {under the assumption that no compression
is wsed), where I is the overhead in bytes introduced by the migration protocol
for each page. Assume that, for the time horizon spanning the entire migration
process, each page p; has a constant probability m; of being accessed at least once
for writing within each time frame T, and assnme the events of write access for
each page are all independent from one another. Assume the mipgration process
works according to the following steps:

1. attime#; in which the migration starts, the set of papges T to be transmitted
is set to the entire set of papes used by the VM; let ny denote its cardinality
ny = |Th|;

2 for k=1 ... K repeat the following: all the ny pages in Ty (ng = |[Dy])
are tramsferred, with a bandwidth of b bytes per second, according to the
order specified by the function ¢ : {1...m} — {1...N} (i.e., the pages
are transmitted in the order py (1), ... P (n,1); the transfer ends at .4, =
tr +np T in which nyg g pages Dy are found to hawe become dirty again;

3. stop the VM and transfer the last ny) pages in Dy, up to the migration
finishing time #; = tp41 +nrp P—I'rl;ﬁ, using a bandwidth of by bytes per
second, with by = b

Real-Time Issues in Live Migration of Virtual Machines
http://retis.sssup.it/~tommaso/publications/VHPC@9.pdf

Then, the crucial values characterizing the migration process are the down-time
fa = t; — tg during which the VM is stopped, and the overall migration time
froe = t; — 11, which may now be expressed in terms of the other quantities
introduced above:

K

P+H P+ H
tq = (b]’)“‘K+11 frer = (b) zﬂ'k + .

k=1

(1)

The above introduced notation and assumptions are at the basis of the following
results, that focus on the case K = 1 for the sake of brevity. All proofs are omit-
ted but they are available at: http:/ fretissssup it/ tommaso fvhpeOi-proofs. pdf

Proposition 1 The probability of a page p, that is not dirty at time £ to become
dirty and thus need to be transmitted in the final migration round is:

PripeDs | péd D} =1—(1—m)"". 2]

Proposition 2 The probability of a page p; that is dirty at time &) to become

dirty again and thus need to be transmitted in the final migration round is
— 1
Pl’{pg = Dg | il = Dl} =1 - {1 _ :T,-:I"J +1—dy i) . {dj
where ¢y () {1.. N} — {1...m} denotes the inverse of the ¢(-) function.

Theorem 1 The expected overall migration time (with K = 1) is:

P+ H P+ H - 11—
=1

(4]
Theorem 2 The order (g (1), ... dp{ng)) of transmission of the pages that
minimizes the ezpected number of dirty pages found at the end of the k'™ live
mugration step must satisfy the following condition:
. (5)

Vi o (L = M))™ = Tap il = Mo 0™
Corollary 1 If the probabilities m; are all lower than ﬁ, than the optimum
ordering is obtained for increasing values of the probabiities w0 On the other
hand, if the probabilities are all greater than %, then the optimum ordering is
obtatned for decreasing values of the ;.

-

g

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

