

* Isaku Yamahata, VALinux Systems Japan K.K. <yamahata@private.email.ne.jp>
 Takahiro Hirofuchi, AIST <t.hirofuchi@aist.go.jp>

KVM Forum November 7th, 2012

Yabusame update:
Postcopy Live migration for QEmu/KVM

mailto:yamahata@private.email.ne.jp

Agenda

From wikipedia

● Precopy vs Postcopy
● Update
● Evaluation
● Future work

This work is partly supported by JST/CREST ULP and KAKENHI (23700048).
The development of Yabusame was partly funded by METI (Minister of Economy,
Trade and Industry) and supported by NTT Communications Corporation.

Yabusame is a joint project with Takahiro Hirofuchi, AIST and Satoshi Itoh, AIST.

Precopy vs Postcopy

Precopy
Round 1

Round
2

Remaining
Dirty pagepr

ep
ar
a

ti
on ...

VM
 s

ta
te

re
st
ar
t

Round N stop

Down time

Total migration time

pr
ep

ar
a

ti
on

VM
 s
ta

te

re
st
ar
t

stop

Total migration time

Down time

Postcopy
Demand/pre paging(with async PF)

resume

resume

Precopy

Postcopy

Performance degradation
Due to dirty page tracking

Performance degradation
Due to network fault

time

Copy VM memory before switching the execution host

Copy VM memory after switching the execution host

Precopy vs Postcopy

Enable
Dirty page
tracking

Characteristic comparison
● Precopy

● Reliablility
– Migration process can be aborted safely.

● Total migration time and downtime depend on memory dirtying
speed
– Especially the number of dirty pages doesn't converge when dirtying
speed > link speed

● Postcopy
● network bandwidth friendly

– Postcopy transfer a page only once

● reliability
– VM can be lost if network failure occurs during migration

Postcopy is applicable for

● Planned maintenance
● Predictable total migration time is important

● Dynamic consolidation
● In cloud use case, usually resources are over-committed
● If machine load becomes high, evacuate the VM to other machine promptly

– Precopy optimization (= CPU cycle) may make things worse

● Wide area migration
● Inter-Datacenter live-migration

– L2 connectivity among datacenters with L2 over L3 has becoming common

– VM migration over DCs as Disaster Recovery

● LAN case
● Not all network bandwidth can be used for migration
● network bandwidth might be reserved by QoS

Updates on Yabusame implementation

Updates
● Basic design is unchanged

● Using a character device
● Precopy + postcopy
optimization

● Auto detection of postcopy
session

● Incoming side threading
● Reduced memory overhead

qemu-kvm

character
device

qemu-kvm

guest RAM

2. page fault is hooked

destination

daemon

3. Request for page
1. access to
guest RAM

4. page contents is sent back

5. page contents
is passed down to
the driver

Host kernel

6. resolve page fault

0. mmap()

source

guest RAM

Host kernel

Precopy + postcopy
● migrate -p URI [<precopy count>]

● Precopy count = 0 => disabling precopy
● Precopy the designated times (or meets
downtime), then switches to postcopy mode

● Send dirty bitmaps after precopy
● Sending bitmap is tricky

● qemu bitmap representation is unsigned
long[] which is architecture dependent

Precopy
Round 1

Round 2

pr
ep
ar
a

ti
on ...

VM
 s

ta
te

re
st
ar
t

Round N stop

Postcopy
Demand/pre paging(with async PF)

resumePrecopy phase Postcopy phase

time

Di
rt

y
bi

tm
ap

postcopy auto detection
● Incoming side auto-detects
postcopy session

● New QEMU_VM_POSTCOPY section
● If incoming side doesn't know
postcopy, it notices the new
section as unknown and results
in error.

● FULL section in POSTCOPY
● Some device touches guest RAM at
post_lost

START

START

END

FULL

START

START

END

FULL

POSTCOPY

POSTCOPY

Threading in incoming side

● Code simplification
● thread vs select
multiplex

● Reduce memory overhead
● Dedicated threads
● Make sure qemu-kvm faults
on the page

● frees already copy of
served pages with
dedicated thread

character
device

qemu-kvm

guest RAM

destination

daemon

Host kernel

3. resolve fault
If not faulted yet
memory copy

5.MADV_REMOVE

1. ask page fault

2. page fault

4. reply

Findings

Serving page fault in qemu
process is difficult

● Serving thread in qemu process
● Finer control would be possible

● Abandaned to reverted to fork

● Playing with mmap_sem is tricky
● Some threads are already in fault
handler with mmap_sem held.

– Sometimes write lock is held: AIO...

– Qemu does use AIO

● Threads that serves page fault can't
page-fault

● Even with multi process, circular
dependency is possible
● Same with FUSE

● Essential solution is in-kernel

character
device

Main/vcpu/io
threads

guest RAM

destination

serving
thread

Host kernel

1.page fault
Lock mmap_sem

mmap_sem

Qemu-kvm process

2. page fault
Request with
lock held

3.Page fault
Lock mmap_sem
Dead lock

source

post_load
● Network fault right while
device state load
● Some post_load() touches guest
RAM
– Kvm-tpr-opt: patches guest RAM

– Some devices start DMA emulation
in qemu

● Qemu main thread blocks before
running vcpu thread

● pre+post optimization helps

Device state

post_load
Kvm-tpr-opt
Touches
guest pages

VM stop

VM start

Page request
Page reply

vmstate_load

source destination

pre+post dirty bitmap

● Processing dirty
bitmap causes long
time

● Move it into
another thread

Device state

VM stop

vmstate_load

VM start
Dirty bitmap

Read bitmap

source destination

Create thread

Process
bitmap

Page request
Page reply

Page request
Page reply

Evaluation

Memory scanning with postcopy
● 6GB memory Guest RAM

● 4thread

● Per-thread
● 1GB

● Each thread accessing all pages

● Time from the first page access to
the last page access

● Start each thread right after
starting post-copy migration

● Background transfer is disabled
Host OS(dst)

1GB ether

1GB 1GB

...

...

Guest VM after switching execution

Memory scan

Thread 1 Thread 4

Host OS(src)

This evaliation is done with old implementation

Memory scan time(real)

VCPU execution efficiency is improved cpu-time/real-time
APF enabled: 0.7
APF disabled: 0.39

Total CPU time allocated to guest VM

Analyze with SystemTap

Serving page fault

Serving page fault

vCPU execution

vCPU execution

vCPU is executing during page is being served

vCPU can't be executed
while page is being served

Siege benchmark with Apache
1GB case

● Host
● Core2 quad CPU Q9400 4core 2.66GHz

● Memory 16GB

● Qemu/kvm
● Memory about 6G(-m 6000)

● Virtio, kernel_irqchip

● Apache
● Prefork 128 process fixed

● Data: 200K * 100000000files = about 2GB

● Warm up by siege before migration

– So all data are cached on memory

● Siege
● http load testing and benchmarking utility

● http://www.joedog.org/siege-home/

● 128 parallel (-c 128)

● Random URL to 10000 URLs

Host(src) Host(dst)

Apache
Prefork

128 process

Guest VM

migration

Client machine

siege

https

GB

GB

http://www.joedog.org/siege-home/

Precopy
Migrate set_speed=125M
(without XBZRLE)

Postcopy w/o background transfer
Prefault forward=100
migrate -p -n tcp:<IP address>:4444 0 100 0

Precopy Postcopy

Siege benchmark with Apache
10GB case

● Host
● Xeon quad CPU E5620 2.40GHz * 2

● Memory 24GB

● Qemu/kvm
● Memory about 6G(-m 6000)

● Virtio

● Apache
● Prefork 128 process fixed

● Data: 200K * 100000000files = about 2GB

● Warm up by siege before migration

– So all data are cached on memory

● Siege
● http load testing and benchmarking utility

● http://www.joedog.org/siege-home/

● 128 parallel (-c 128)

● Random URL to 10000 URLs

Host(src) Host(dst)

Apache
Prefork

128 process

Guest VM

migration

Client machine

siege

https

10GB

GB

http://www.joedog.org/siege-home/

Precopy
Migrate set_speed=1250M
(without XBZRLE)

Postcopy w/o background transfer
Prefault forward=400
migrate -p -n tcp:<IP address>:4444 0 400 0

Precopy Postcopy

Future work

● Upstream merge
● Benchmark: Others are already working on it.(Benoit
Hudzia and Vinod, Chegu)

● Integration with RDMA approach. Find clean design
● Investigate for fuse version of umem device and
evaluation
– See if it's possible and its performance is acceptable

● downtime work
● Fetch latency sensitive page first

– post_load page
– Pv device page

Thank you
● Questions?

● Resources

● Project page

– http://grivon.apgrid.org/quick-kvm-migration

– http://sites.google.com/site/grivonhome/quick-kvm-migration

● Enabling Instantaneous Relocation of Virtual Machines with a Lightweight VMM Extension: proof-of-concept,
ad-hoc prototype. not a new design

– http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-paper.pdf

– http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-talk.pdf

● Reactive consolidation of virtual machines enabled by postcopy live migration: advantage for VM
consolidation

– http://portal.acm.org/citation.cfm?id=1996125

– http://www.emn.fr/x-info/ascola/lib/exe/fetch.php?media=internet:vtdc-postcopy.pdf

● Qemu Wiki

– http://wiki.qemu.org/Features/PostCopyLiveMigration

● Demo video

– http://www.youtube.com/watch?v=lo2JJ2KWrlA

● Github repo

– git://github.com/yamahata/qemu.git qemu-postcopy-nov-03-2012

– git://github.com/yamahata/linux-umem.git linux-umem-oct-29-2012

http://grivon.apgrid.org/quick-kvm-migration
http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-paper.pdf
http://grivon.googlecode.com/svn/pub/docs/ccgrid2010-hirofuchi-talk.pdf
http://portal.acm.org/citation.cfm?id=1996125
http://www.emn.fr/x-info/ascola/lib/exe/fetch.php?media=internet:vtdc-postcopy.pdf
http://wiki.qemu.org/Features/PostCopyLiveMigration
http://www.youtube.com/watch?v=lo2JJ2KWrlA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

