VastSky

Cluster storage system for XCP

Apr. 28th, 2010
VA Linux Systems Japan K.K.
Hirokazu Takahashi
Tomoaki Sato
Takashi Yamamoto
What is VastSky all about?

- VastSky is a cluster storage system made up of a lot of servers and disks, from which VastSky Manager creates logical volumes for VMs.
- VMs can directly run on VastSky, which XCP can control.
- VastSky is scalable, high available and has a good performance.
XCP

VM

server

logical volumes

agent

VM

VM

VM

VM

VM

VM

VastSky

control

request

XML-RPC

create

control

create

storage pool

Xen Summit AMD 2010 CONFIDENTIAL
Announcement

- The code of VastSky has become open at http://sf.net/projects/vastsky/

 Some more work is needed to be done before the first release.
Basic Design

- A logical volume is a set of several mirrored disks, each of which consists of several physical disk chunks on different servers.
 - The logical volume won’t lose its data whether a physical disk or a storage server in the storage pool has broken.
 - All I/O requests, including read, write and even re-synchronizing requests of mirrored devices will be distributed to all the physical disks.
The way of making a logical volume
Good performance

- All I/O operations will be done in the linux kernel without any VastSky Manager interactions.
- I/O loads of logical volumes, which can be extremely unbalanced, will be equalized between the physical disks.
- I/O requests to rebuild mirrored devices are also distributed across a lot of physical disks.
Load balancing of read/write requests
Load balancing of read/write requests
Mirrored disk recovery

- Each mirrored disk doesn’t have its own spare disk.
- When VastSky detects one of the physical disk chunks of the mirrored disk has caused an error, VastSky Manager allocates a new chunk form the storage pool and assigned it to the mirrored disk as a spare.
 - The manager schedules when it should be assigned, so two or more re-sync operations won’t work on the same physical disk.
- The mirrored disk starts re-synchronizing the disk chunks right after the spare is assigned.
Mirrored disk recovery

1. detect the error
2. allocate a chunk
3. assign the chunk as a spare
3. delete the failure disk

mirrored disk (a part of a logical volume)

physical disk chunks

storage pool

BROKEN

Xen Summit AMD 2010
Load balancing when re-synchronizing the mirrored devices

- When a certain physical disk gets broken, VastSky tries to rebuild the mirrored disks related to the physical disk simultaneously since the disk chunks belong to different mirrored disks.
 - No need to rebuild if the disk chunk is unused.
Load balancing when re-synchronizing the mirrored devices
Scalable

- Each volume can handle its I/O operations independently.
 - VastSky Manager doesn’t care about it.
- Servers can be added to the system dynamically.
How to setup

- VastSky should be installed with VM management software such as XCP to take care about VM life-cycle.
- Networking redundancy should be implemented outside VastSky, such as using a bonding device.
- Hardware health check should also work outside VastSky and hopefully it can tell VastSky which server or disk should be removed.
- The current implementation of VastSky requires HA cluster software to detect its manager down to be restarted.
VastSky supports XML-RPC interface and CUI like:

- Define a logical volume.
- Attach the logical volume on a specified server.
- Detach the volume.
- Notify which disk or server has gone.
- Add a new server or a physical disk.
- Delete the server or the physical disk.
ToDo (1)

- XCP integration
 - Under development.

- Improve scalability.
 - Network topology aware volume allocation. When creating a new logical volume, physical disk chunks should be allocated from storage servers close to the server that owns the logical volume.

- Logical volume expansion feature.

- Snapshot feature for Guest volumes.
Ideas of how to implement volume snapshot feature

- Use dm-snap. It is the easiest way but works slow.
- Implement a completely new implementation like Parallax does but it will take long time.
- Use OCFS2, which has rich features but it will be a bit heavy.
An idea of using OCFS2

- If you place only one VM’s volume placed in an OCFS2 on a logical volume on a head-server, you can obtain:
 - Better snapshot mechanism using an ocfs2’s new feature reflink.
 - Thin provisioning.
 - The volume can still be moved to another server.
Place only one guest's volume in an ocfs2 filesystem

Server A

- VM1
- OCFS2
- VM1's volume
- snap
- logical volume
- can be extended

Server B

- VM2
- OCFS2
- VM2's volume
- snap
- logical volume
- migrate

- VM3
- OCFS2
- VM3's volume
- snap
- logical volume

Physical storage pool

Logical volume can be extended.
Todo (2)

- Shared storage for VMs, which some type of active/active clustering software requires. The point is the way of rebuilding the mirrored devices.
 - The way to determine which server should take the job to rebuild the mirrored device.
 - Make the rebuilding job and write access to the device exclusively.
- Fast VM deploying and cloning. This can be done with the combination of “shared storage” and “snapshot” features.
Fast VM deployment

- logical volume snapshot
 - COW
 - ready only
 - e.g. CentOS installed

storage pool

CentOS installed on Xen Summit AMD 2010 CONFIDENTIAL
ToDo (3)

- Make one server be able to manage both VMs and a lot of physical disk.
 - Do you really want this feature?
- Improve the disk chunk allocation algorithm.
 - Make it disk performance aware.
- Graceful server termination.
 - The copies of the chunks in the server should be prepared before the termination.
- Make VastSky Manager be able to run in a VM.
 - Need some trick. The info to create the volume of the VM for VastSky is stored in this volume.
Roadmap

- **First version release**
 - XCP integration
 - Make it stable
 - Performance test
 - Write documents
 - The target date is this coming June.

- **Second version and after**
 - The rest on the Todo list. What should we do first?
Thank you!